七年前,2015年,这本书出现在我的欧洲家庭。最近54,000年。在其中,我养育了自己的祖先,以帮助讲述欧洲的早期历史。这本书取得了巨大的成功,转化为16种语言。一年后的2016年,与DNA家庭研究员PeterSjölundI一起出版了继任者:Svens-Karna或DermasFäder。de Senaste 11000ÅREN(瑞典人及其父亲。最近11,000年)。这本书基于Akade Mixer Science,但也基于许多在工作中使用DNA分析的家庭研究人员的数据。它在高条件下也受到好评和出售。两本书都是第一个报告DNA研究如何改变我们对人类历史的了解的人之一。DNA技术的事实是,我们能够获得有关人们近年来人口的新发现,例如人们,我们的大陆欧洲和整个世界。研究人员过去几十年和几个世纪的问题终于得到了回答。这就是科学哲学家所说的“范式变化” - 我们世界上的革命性变化。鉴于最近的研究,我的欧洲家庭和Svens-Karna或DermasFäder的结果也得到了很好的良好。没有
1 JET推进实验室,美国2巴黎观测站,法国勒马3辐射仪物理学GmbH,德国,星际培养基和行星大气都富含具有光谱旋转和振动签名的分子物种,这些分子在1-10 Thz频率范围内。在2.06 THz(145.525 um)处的原子氧(OI)发射是地面热层中两条最亮的发射线之一,已经从气球中观察到,声音发声和轨道平台[1]。Schottky二极管前端接收器已被证明2.5 THz [2],具有二氧化碳甲醇气体激光振荡振荡器源。这使得可以在Cubesat或类似微型平台上部署的A2-THZ所有固态前端杂种接收器的开发。首先,我们将介绍2THZ前端接收器的初步开发,其第一电路迭代具有与以前的研究相似的平衡亚谐波混合器,以及Noise温度测量系统。其次,我们将讨论第二次迭代的进一步电路开发,包括一种新型的偏见亚谐波混合器。此混合器提供了一对反行的二极管,有利于在可用的功率和线路损失之间更好地折衷,并在[4]中部分解决。参考文献[1] K. U. Grossmann,M。Kaufmann和E. Gerstner,对下热层原子氧的全球测量,地球。res。Lett。,卷。 27,编号 9,1387-1390,2000。Lett。,卷。27,编号9,1387-1390,2000。[2] P. Siegel,R。Smith,M。Gaidis和S. Martin,“ 2.5-Thz Gaas Monolithic Membrane-Diode Mixer”,IEEE Trans。微量。理论技术,第1卷。47,否。5,pp。596–604,1999年5月。[3] E. Schlecht,Siles,J.V.,Lee,C.,Lin,R.,Thomas,B.,Chattopadhyay,G.,Mehdi,I。“ Schottky Diode基于基于室温的1.2 THz接收器,在室温下运行,在室内及下面,用于行星的大气音响” IEEEE EEEE EEEE EEE EEE TRANS。Terahertz Sci。Tech,第4卷,第4号6,2014年11月。[4] Jeanne Treuttel,B。Thomas,A。Maestrini,J.V.-Siles,C。Lee,I。Mehdi,“一款具有独立有偏见的Schottky Diodes的330 GHz Sub-Harmonic混合器”,国际太空Terahertz Technology在Terahertz Technology上,Terahertz Technology,Terahertz Technology,2012年4月,2012年4月,日本东京,日本。
DJ 控制设备 4x Technics SL1210 MkII 转盘(不提供唱针/唱头/触针) 2x CDJ 3000 / 2x CDJ 2000(未连接)/ DJM2000 混音器 / 2x DJM 900NX S2 舞台/乐队灯光 1 x Avolites Tiger Touch 2(带推子翼) 6 x Axcor Spot 300 4 x Robe Robin 600 LEDWash 8 x Chrome-Q Color Punch LED 灯 2 x Showtech Sunstrip Active MkII 1 x Unique 2.1 Hazer 3 x 18 x 10amp 调光器
在取样前,应将样品彻底均质化。将样品容器放入温度为 50°C 至 60°C 的烤箱中,并将样品保持在此温度,直到所有样品熔化并达到均匀的粘度。将搅拌器 (5.3) 的轴插入样品中,使轴头浸入容器底部约 5 毫米处。将样品均质约 5 分钟。对于已静置数月的流体样品,在均质前使用塑料棒去除粘附在样品容器底部的任何沉淀物。
序号 设备 1. 十字板剪切试验装置 2. 粘度试验装置 3. 混凝土能量吸收试验 4. 混凝土耐磨性试验 5. 快速氯化物渗透性试验装置 6. 透氧性指示器 7. 透水率仪 8. 收缩仪 9. 半电池电位计 10. 混凝土电阻率仪 11. 腐蚀速率仪 12. 涂层厚度计 13. 坑深度计 14. 雾气生成装置 15. 水泥高压釜装置 16. 混凝土搅拌盘
会议4:模块制造会议主席:Teresa Barnes,Tristan Erion -Lorico美国制造概述 - Teresa Barnes,Nrel(4:00-4:05)材料选择对玻璃背部模块的材料选择的敏感性Kontopp,Qcells(4:20-4:35)美国模块制造和冰雹抗性模块开发-Hongbin Fang,Longi,Longi(4:35-4:50)小组讨论(4:50-5:20)。
摘要 本研究提出了一种创新技术,基于一种高效的低功耗 VLSI 方法,设计用于信号和图像处理中混频电路应用的 4 位阵列乘法器。建议的架构使用近阈值区域的绝热方法来优化传播延迟和功耗之间的权衡。乘法器是许多数字电子环境中必不可少的组件,因此诞生了许多针对特定应用定制的乘法器类型。与传统 CMOS 技术相比,该技术显著降低了动态和静态功耗。近阈值绝热逻辑 (NTAL) 使用单个时变电源实现,从而简化了时钟树管理并提高了能源效率。使用 Tanner EDA 工具和 Spectre 模拟器在 TSMC 65 nm 技术节点上对建议的设计进行仿真,以确保验证优化结果。与典型的 CMOS 方法相比,在保持相似设计参数的情况下,可变频率、电源电压和负载电容的功耗分别显著改善了约 66.6%、14.4% 和 64.6%。值得注意的是,随着频率变化,负载电容保持恒定在 C load = 10 pF 和 VDD (max) = 1.2 V;随着电源电压变化,负载电容保持恒定在 C load = 10 pF 和频率 F = 4 GHz;随着负载电容变化,频率保持在 F = 4 GHz 和电源电压 VDD (max) = 1.2 V。关键词:- 4 位阵列乘法器、绝热逻辑、低功耗 VLSI、近阈值区域、NTAL 方法、TSMC 65 nm CMOS 技术、混频器电路、信号和图像处理、能源效率、Tanner EDA、Spectre 模拟器和功耗优化。
摘要这项研究为基于有效的低功率VLSI方法设计了一种在信号和图像处理中设计的4位阵列乘数的创新技术。建议的架构使用近阈值区域的绝热方法来优化传播延迟和耗能之间的权衡。乘数是许多数字电子环境中必不可少的组成部分,导致了许多针对某些应用程序定制的乘数类型的诞生。与传统的CMOS技术相比,该技术大大降低了动态和静态功率耗散。接近阈值绝热逻辑(NTAL)是使用单个时间变化的电源实现的,这简化了时钟树的管理并提高了能源效率。使用Tanner EDA工具和幽灵模拟器在TSMC 65 nm技术节点上模拟了建议的设计,并确保验证了优化的结果。与典型的CMOS方法相比,在保持相似的设计参数的同时,可变频率,电源电压和负载电容的功率耗散大约有66.6%,14.4%和64.6%的显着提高。值得注意的是,随着频率变化,负载电容在C负载= 10 pf和vdd(max)= 1.2 V时保持恒定。随着电源电压的变化,负载电容在C负载= 10 pf时保持恒定,而频率为f = 4 GHz; and with load capacitance variation, the frequency is maintained at F = 4 GHz and the supply voltage at VDD (max) = 1.2 V. Keywords: - 4-bit array multiplier, adiabatic logic, low-power VLSI, Near Threshold Region, NTAL approach, TSMC 65 nm CMOS technology, mixer circuit, signal and image processing, energy efficiency, Tanner EDA, Spectre simulator, and功率耗散优化。