摘要简介:羊水栓塞是一种罕见但可能致命的产妇虚脱原因,占产妇死亡率高达 10%。这种反应类似于过敏反应,而不是典型的栓塞,通常在尸检时确诊。我们中心有 2 例在 2 天内发生致命的羊水栓塞病例,均进行了全面尸检。本报告将研究风险因素、表现和治疗。病例描述:患者 1:36 岁,初产妇,通过 IVF 怀有 DCDA 双胞胎。她因不明原因 APH 多次入院,在 29 周时出现宫颈缩短,计划住院监测,但不幸的是 5 天后需要剖腹产。然而,患者在产下第二个双胞胎后在术中出现心肺衰竭。尽管立即插管和复苏,但患者最终在 4 小时后死亡。患者 2:一名 35 岁、妊娠 35 周的 G3P2 患者,胎膜破裂后在家中晕倒。她因羊水过多和胎儿 21 三体综合征接受随访,并在 31 周时进行了羊水减少术。她到达时已经插管并接受正性肌力支持,并被诊断为羊水栓塞伴胎盘早剥。到达后不久,她的血压就无法记录,尽管进行了复苏,但患者在 66 分钟后死亡。讨论:羊水栓塞是一种可能致命的产科急症。检查风险因素、初步治疗和检查可能存在缺陷的领域将有助于从业者做好准备。
3 根据 EO 13825(2018 年 3 月 1 日),本案中指控的罪行发生在 2019 年 1 月 1 日之后,即 2016 年《军事司法法》生效的日期。4 海岸警卫队军事司法手册 (MJM) (COMDTINST 5810.1H)(2021 年 7 月 9 日)要求在军事法庭休庭后三十天内完成笔录。MJM 第 21.E.5 小节。(此规定与 MJM 的上一版本相同。)本案未满足该时间标准。
马来西亚医学杂志(MJM)欢迎有关医学各个方面的文章,形式包括原创论文、评论文章、简短通讯、继续医学教育、病例报告、评论和致编辑的信。文章仅可投稿到马来西亚医学杂志,方可发表。注意:MJM 每两个月出版一次,即一月、三月、五月、七月、九月和十一月。所有手稿的要求请确保您提交给 MJM 的文章符合国际医学杂志编辑委员会关于医学杂志学术作品的行为、报告、编辑和出版的建议。编辑委员会和出版商均不对作者在其投稿中表达的观点和陈述负责。编辑委员会还保留拒绝在学会面前宣读的论文的权利。为避免出版延误,建议作者严格遵守以下说明。手稿手稿应以英文(英式英语)提交。稿件应通过 MJM Editorial Manager 在线提交,http://www.editorialmanager.com/mjm。网站上有注册和提交说明。作者将能够通过 MJM Editorial Manager 随时监控其稿件的进度。对于遇到系统问题的作者和审稿人,可通过登录屏幕任务栏上的“帮助”选项访问在线用户指南和常见问题解答。MJM 在提交时收取一次性、不可退还的文章处理费 (APC)。只有编辑委员会成员和受编辑邀请撰写文章的作者才可以免除 APC。此外,上一年的 MJM 审稿人认可奖获得者可以享受下一年度 APC 豁免(例如,2022 年 MJM 审稿人认可奖获得者将享受 2023 年 1 月至 12 月期间提交文章的 APC 豁免)。 MJM 会员:RM500 非会员:RM800 海外:USD200 MJM 病例报告会员:RM400 非会员:RM500 准备您的手稿 MJM 文章处理费是不可退还的管理费。支付 APC 并不保证手稿被接受。只有在成功完成 MJM APC 后,提交的文章才会被送去评审。所有提交的内容必须附有由所有作者正式签署的完整版权转让表、版权转移表和利益冲突表。表格可以从 MJM 网站 https://www.e-mjm.org/ 下载 手稿文本应以 Microsoft Word 文档的形式提交。表格和流程图应以 Microsoft Word 文档的形式提交。图像应作为单独的 JPEG 文件提交(最低分辨率为 300 dpi)。同行评审过程 所有提交的材料必须至少包括两 (2) 位特别有资格评审该作品的人员的姓名。所有提交的稿件在送交同行评审之前都将由主编审阅。提交给 MJM 的稿件将经过双盲同行评审并在线管理。拟议的审稿人不得参与所提交的工作,也不得与任何作者隶属于同一机构,或在评审稿件方面存在任何潜在利益冲突。审稿人的选择是 MJM 编辑的特权。 作者资格 MJM 遵循国际医学期刊编辑委员会 (ICMJE) 的建议,以考虑作为所提交论文的作者的资格。ICMJE 建议作者资格基于以下四 (4) 个标准:1. 对作品的构思或设计做出重大贡献;或对作品数据的获取、分析或解释; 2 起草作品或对重要知识内容进行批判性修改;3 最终批准要发布的版本;4 同意对作品的所有方面负责,确保对与作品任何部分的准确性或完整性相关的问题进行适当的调查和解决。论文类型原创文章:原创文章是关于未发表的原创研究结果的报告。将优先考虑发表高质量的原创研究,这些研究对研究结果具有重要意义优先考虑发表高质量的原创研究,这些研究对优先考虑发表高质量的原创研究,这些研究对
1 根据 EO 13825(2018 年 3 月 1 日),本案中指控的罪行发生在 2019 年 1 月 1 日之后,即 2016 年《军事司法法》生效的日期。2 海岸警卫队《军事司法手册》(MJM)(COMDTINST 5810.1H)(2021 年 7 月 9 日)要求在军事法庭休庭后三十天内完成笔录。MJM 第 21.E.5 小节。(此规定与 MJM 的上一版本相同。)本案未满足该时间标准。
这项荟萃分析重点关注了自 1995 年以来计算机支持的单词阅读干预措施(基础阅读指导、补充字母拼写、阅读流畅度、补习阅读)对不同语言小学生阅读相关结果指标(字母知识、语音意识、单词和假词阅读、句子和文本阅读、拼写以及向阅读理解的转变)的影响。我们确定了 67 项研究,共涉及 10,734 名小学儿童,从中得出了 694 个效应大小。按照多层次方法,干预措施和结果指标的平均效应大小为 0.36,95% 可信区间(0.28,0.43)。也有证据表明效应大小向阅读理解转变,69 个效应大小平均为 0.21(95% 可信区间 0.13 – 0.29)。不同研究之间,尤其是研究内的比较之间,效应大小差异很大。效果大小受治疗长度、子词级别作为标准变量和加速测试的影响。效果大小取决于对照组条件,即在教育照常的对照条件下,效果大小较高,而在阅读治疗对照条件下,效果大小较低。结论是,技术增强的单词阅读干预措施平均对不同项目类型和不同语言的单词学习的准确性和速度产生中等积极影响。
1 萨拉曼卡大学实验肝病学和药物靶向 (HEVEPHARM) 小组,IBSAL,37007 萨拉曼卡,西班牙; mjmonte@usal.es (MJM); rociorm@usal.es (RIRM); marta.rodriguez@usal.es (MRR); elisah@usal.es (EH); masensio002@usal.es (MA); saraortizriv@usal.es (SO-R.); candelacives@usal.es (CC-L.) 2 Centro de Investigación Biomédica en Red de Enfermedades Hep áticas y Digestivas (CIBERehd),卡洛斯三世国立卫生研究院,28029 马德里,西班牙; jgonga@unileon.es (JG-G.); jl.mauriz@unileon.es (JLM) 3 罗马大学生理学和药理学系“Vittorio Erspamer”,00185 罗马,意大利;silvia.digiacomo@uniroma1.it 4 莱昂大学生物医学研究所(IBIOMED),Vegazana s/n 校区,24071 莱昂,西班牙 5 约翰内斯古腾堡大学制药和生物医学科学研究所药物生物学系,Staudinger Weg 5,55128 美因茨,德国;efferth@uni-mainz.de * 通讯地址:jjgmarin@usal.es (JJGM);obriz@usal.es (OB);电话:+34-663182872 (JJGM);+34-663056225 (OB)
3D打印的概念已经存在了数十年,其根源可以追溯到科幻小说和电影。这一切都始于Hideo Kodama博士,他开发了一种用于通过使用光敏树脂的逐层方法来创建三维对象的系统。尽管他的工作并没有立即导致商业产品,但它引发了我们今天所知道的3D打印技术的开发。查克·赫尔(Chuck Hull)于1984年申请了3D印刷的第一项专利,这是其历史上一个重要的里程碑。但是,通过逐层制造创建对象的想法可以追溯到更多。在1940年代和1950年代,默里·伦斯特(Murray Leinster)和雷蒙德·琼斯(Raymond F.1970年代,约翰内斯(Johannes f Gottwald)获得了液态金属记录器的专利,这是当今加性技术的先驱。Charles Hull于1984年发明的立体光刻学(SLA)发明,通过利用紫外线来固化光敏感的树脂层并从数字设计中创建固体结构,从而革新了3D打印。1980年代后期看到了由Scott Crump专利的融合沉积建模(FDM)的开发,后者使用融化的塑料逐层构建对象。这些创新为现代3D打印技术铺平了道路,这已成为当今制造事物的重要工具。从火箭零件和医疗工具到艺术和其他创意项目,3D打印为创新和创造力开辟了新的可能性。使您的项目变得更好?FFF打印机通过一次热喷嘴挤压热塑性胶粘剂,一次创建三维对象。今天,FFF是使用最广泛的3D打印技术之一 - 它很容易,可靠且超级可访问!另一个重大突破是选择性激光烧结(SLS),它使您可以使用激光使用激光将它们融合在一起的各种材料,例如塑料,金属和陶瓷。这为3D打印开辟了一个全新的可能性,包括为飞机和医疗植入物制作定制零件。在80年代,3D打印开始从仅仅是一种快速原型制作工具转变为一种全面的生产技术,该技术可以改变航空航天和医学等行业的游戏。90年代看到了更多的创新 - 立体光刻(SLA)具有更好的激光和树脂的重大提升,使其更快,更精确。同时,FFF也在变得更好,Stratasys领导了电荷并制造超可靠的打印机,可以打印各种热塑性材料。SLS也有所改进,让人们打印诸如粉末状金属之类的奇怪物品,这是航空航天和汽车等行业的全面改变游戏规则。然后是多喷式建模(MJM),它使用喷墨机制逐层打印光聚合物材料 - 它是快速,详细且完全很棒的。3D系统不断使用新的SLA机器和材料来推动界限,这使得3D打印更容易被医学,牙科和航空航天等行业访问。但这是事实:90年代也看到了消费者级别的3D打印的兴起 - 突然之间,不仅仅是专业人士!人们开始使用负担得起的打印机,这些打印机可以制造出各种很酷的东西。3D打印的历史开始于1999年开始形成,当时Wake Forest森林再生医学研究所的科学家设计并植入了第一个3D打印的人体器官,这是一种使用患者细胞的合成膀胱支架。生物打印中的这种突破展示了3D打印在产生复杂的组织和器官中的潜力。2000年代初期,计算机辅助制造过程取得了重大进步。融合细丝制造(FFF)技术得到了改进,在商业和个人使用方面变得更可靠和访问。热塑性和加热喷嘴的改进增强了可打印物品的质量和多样性。FFF技术专利有助于推进桌面3D打印,使公众更容易获得。2000年代中期见证了选择性激光烧结(SLS)技术的发展,在扩大其工业应用的同时提高了精度和速度。立体光刻(SLA)变体的出现导致更高的分辨率和更快的打印时间,使SLA成为高尾部原型和生产的关键工具。新的材料挤出技术可以使用各种材料,例如碳纤维增强的塑料,从而为苛刻的应用提供了增强的机械性能。引入多物质3D打印打印机允许同时处理多种材料,从而产生更复杂的零件。单个印刷作业中各种材料的融合增强了印刷品的功能和视觉吸引力。2010年代在3D打印中展现了前所未有的扩展,以技术突破,更广泛的可访问性和各个部门的应用。关键发展包括FFF技术的成熟,关键专利的到期,导致负担得起的台式机3D打印机以及具有选择性激光熔化(SLM)的金属3D打印的进步。在2010年代的十年中,3D打印方面取得了重大进步,其技术能够生产复杂的金属零件在航空航天和车辆制造中变得无价之宝。多物质印刷的兴起通过结合硬质和软塑料来创建更复杂和功能的部分。生物印刷也取得了巨大的进步,使研究人员能够打印人体组织和器官,从而在医学科学领域开辟了新的边界。3D打印中的创新导致了关键专利的提交,其中包括Stratasys的一项用于FFF中的可移动支持,该专利简化了后处理,另一种用于改进SLM技术。这些进步扩大了跨行业的3D印刷的应用,包括医学,航空航天,汽车,消费产品,教育和DIY项目。2020年代继续看到3D打印的显着增长,技术突破可以增强能力并将其整合到各个部门中。添加剂制造技术的进步具有提高的速度,效率和多功能性,可以使用高级材料(例如碳纤维和玻璃纤维)。在2020年代提交的新专利正在塑造3D打印的未来,包括与多物质印刷相关的印刷品。金属3D打印也有了很大的发展,精确度和与各种金属粉末一起工作的能力提高了,对需要复杂,轻量级部分的行业特别有影响力。对3D印刷中的可持续性的关注导致材料废物和能源消耗的减少,与全球在环保制造实践方面的努力保持一致。大型3D打印的出现已经开辟了建筑和建筑方面的新可能性,从而实现了使用此技术的建筑组件和整个结构的创建。软件和AI集成通过3D打印过程中的专利提高了3D打印机的精度,速度和可用性。3D印刷的未来有望随着市场研究的不断增长表明进一步发展。北美的市场统治地位,由于美国和加拿大等国家对高级增材制造技术的投资以及NASA等政府机构的研发投资,从2023年到2030年的复合年增长率为21.4%。FFF和SLS的技术进步已做出了重大贡献,尤其是由于DMLS/SLM技术预计将在高复合年增长率上生长,因为它们能够生产出高质量的金属组件进行快速原型制作。汽车行业一直是用于快速原型应用程序和快速制造定制产品的3D打印的关键采用者,而航空航天行业则使用3D打印机来制造轻量级组件。单击此处与我们聊天,并了解Rish3D如何帮助您做惊人的事情。医疗保健正在发展人造组织和肌肉,以及建筑,建筑,消费品和教育等部门将在采用3D打印技术方面具有显着增长。新兴趋势包括通过减少材料废物和优化能源使用来关注可持续性和环境考虑。AI和软件进步的集成增强了精度和功能,从而导致了更有效和可定制的生产过程。此外,材料科学的进步导致了新材料的开发,包括高级聚合物和复合材料,这将进一步扩大3D打印机的功能和应用。第一台商业3D打印机是由查克·赫尔(Chuck Hull)于1984年开发的。他还发明了立体光刻过程并创立了3D Systems Corporation。他的工作帮助开拓了3D印刷行业,将逐层制造的概念转变为有形且商业上可行的技术。最古老的3D打印技术是Chuck Hull于1984年发明的立体光刻(SLA)。此技术涉及用紫外线固化光敏树脂,以一层构建对象。SLA标志着增材制造技术的开始和现代3D打印的诞生。虽然3D打印取得了重大进展,但它并不比互联网更古老。互联网的基本思想可以追溯到1960年代,而3D打印始于1980年代初,以查克·赫尔(Chuck Hull)的立体光刻开始。因此,互联网早于3D打印大约二十年。在2008年,随着关键融合沉积建模(FDM)专利的到期,3D打印行业的关键发展发生。结果,桌面3D打印机变得负担得起,使对该技术的访问的访问大大使其民主化。重复项目,旨在创建自我复制的3D打印机,也获得了动力,进一步提高了普及度和可及性。另外,2008年看到了第一个使用3D打印技术打印的假肢。3D打印的概念可以追溯到1950年代,其中雷蒙德·琼斯(Raymond F.在1970年代,约翰内斯·戈特瓦尔德(Johannes f Gottwald)在《新科学家》(New Scientist)的常规专栏文章Ariadne中介绍了液态金属记录器的专利,大卫·E·H·琼斯(David E. H. Jones)在他的常规专栏文章中提出了3D印刷的概念。hideo kodama在1980年4月发明了两种用于制造三维塑料模型的添加剂方法,1980年4月,罗伯特·霍华德(Robert Howard通过分层技术创建三维对象的历史可以追溯到1980年代初。1984年7月2日,Bill Masters在美国为其计算机自动制造过程和系统申请了专利。随后是AlainLeMhauté,Olivier de Witte和Jean ClaudeAndré,于1984年7月16日提交了其专利申请,用于立体光刻过程。但是,直到1986年,查尔斯·“查克”赫尔(Charles“ Chuck” Hull)为其系统获得了专利,这导致了第一台商业3D打印机SLA-1的发布。这标志着三维印刷技术的发展是一个重要的里程碑。在接下来的几年中,取得了各种进步。在1993年,Solidscape引入了具有可溶性支撑结构的高精度聚合物喷气制造系统。Fraunhofer学会于1995年开发了选择性激光熔化过程。作为成熟的添加剂制造工艺,很明显,金属加工不再仅限于传统方法,例如铸造和加工。到2010年代,金属最终用途的零件(例如发动机支架和大螺母)通过3D打印而不是需要传统的加工技术。添加剂制造的设计优势变得显而易见,使工程师期望进一步进入各种行业。在2012年,Filabot开发了一个系统,该系统启用了任何FDM或FFF 3D打印机,以更广泛的塑料打印。在2014年,发生了一些重大突破。本杰明·库克(Benjamin S.本地电动机首次亮相,这是一种功能齐全的车辆,完全使用ABS塑料和碳纤维打印,除了动力总成。空中客车公司还于2015年5月宣布,其新的空中客车A350 XWB包括3D打印制造的1000多个组件。ge Aviation在2017年透露,它已将设计用于增材制造来创建各种飞机零件。设计只有16个组件的直升机引擎可能是一个改变游戏规则,可以通过最大程度地减少当前陷入困境制造商的复杂零件的网络来大大简化全球供应网络。