培养的花生被用作识别Ahmlo基因座的参考。我们的结果表明,鉴定了25个Ahmlo基因座,并分布在培养花生的铬味上。11个Ahmlo基因座位于A基因组上,其余14位在B-Genome上。在Ahmlo基因座的编码序列中观察到插入的内含子序列(4-14)和跨膜螺旋(4-8)的可变数量。此外,Ahmlo基因座的系统发育分析以及来自其他物种的同源物将Ahmlo基因座聚集成六个进化枝。将三个Ahmlo基因座聚集在已知的进化枝V中,以重新组合粉状易感性位点。此外,在特定AHMLO的启动子区域预测了四个核心启动子以及与PM敏感性有关的顺式调节元件。这些结果提供了有力的证据表明MLO基因座在培养的花生基因组中的鉴定和分布,并且可以使用识别的AHMLO基因座进行识别的特定ahmlo基因座,可用于丧失易感性研究。
70 kDa (EXO70) 蛋白的胞外囊泡成分是胞外囊泡复合物的组成部分,与胞吐过程中的囊泡束缚有关。抗霉菌位点 O (MLO) 蛋白是植物特异性钙通道,一些 MLO 同工型可促进真菌白粉病的致病。我们在此检测到拟南芥 exo70H4 和 mlo2 mlo6 mlo12 三重突变体植物在叶毛状体次生细胞壁的生物发生方面存在意外的表型重叠。生化和傅里叶变换红外光谱分析证实了这些突变体中毛状体细胞壁组成的缺陷。表达荧光团标记的 EXO70H4 和 MLO 的转基因系表现出这些蛋白质的广泛共定位。此外,mCherry-EXO70H4 错误定位在 mlo 三重突变体的毛状体中,反之亦然,MLO6-GFP 错误定位在 exo70H4 突变体的毛状体中。GFP 标记的 PMR4 胼胝体合酶(EXO70H4 依赖性胞吐的已知货物)的表达表明,mlo 三重突变体植物的毛状体中 GFP-PMR4 的细胞壁输送减少。植物和酵母细胞中的体内蛋白质-蛋白质相互作用测定揭示了 EXO70.2 亚家族成员和 MLO 蛋白之间的异构体优先相互作用。最后,exo70H4 和 mlo6 突变体结合时表现出协同增强的对白粉病攻击的抗性。总之,我们的数据表明 EXO70 和 MLO 蛋白在调节毛状体细胞壁生物合成和白粉病易感性方面存在异构体特异性相互作用。
在制定本标准许可证之前,MLOS空气排放的唯一可用许可机制是通过规则许可证第30章第106章第30章的PBR授权组合;亚第章,燃烧;子章K,一般;子第章,水箱,存储和加载;和子章V,热控制设备;或逐案NSR许可证作为30TAC§116.111,一般申请,授权。本标准许可提供了构建前授权机制,任何符合要求的MLO都可以使用,前提是其他地方,州或联邦许可法规或法规不禁止MLO。创建本标准许可证允许MLO设施具有比PBR授权更大的操作灵活性,并提供了简化的授权流程,允许授权比逐案NSR许可更有效地发出授权。
农业面临的最大挑战之一在于找到策略,从而最大程度地减少因害虫和疾病而引起的农作物产量损失。白粉病(PM)是一种广泛的真菌疾病,影响了多种农作物。例如,在黄瓜(Cucumis sativus L.)中,PM可导致高达40%的损失(他等人2022)。各种研究的重点是鉴定有益于黄瓜育种计划的PM抗药性(PMR)基因(Liu等人2008)。 定量性状基因座(QTL)用于映射PMR的表征将霉菌抗性基因座8(CSMLO8)基因的破坏与黄瓜中的PM抗ANCE联系在一起。 然而,尽管CSMLO8的功能损失对于PMR是必不可少的,但这还不足以产生完全的阻力(Nie等人。 2015a,2015b; Berg等。 2015)。 耐PM的QTL还包含CSMLO家族的其他成员,指出超过1个CSMLO基因参与PM耐药性(Schouten等人。 2014)。 一项研究将MLO蛋白描述为钙调蛋白蛋白的钙通道蛋白(Gao等人 2022),表明钙信号传导与MLO介导的PM抗性有关。 但是,PM抗性的组成部分和机制均未完全理解。2008)。定量性状基因座(QTL)用于映射PMR的表征将霉菌抗性基因座8(CSMLO8)基因的破坏与黄瓜中的PM抗ANCE联系在一起。然而,尽管CSMLO8的功能损失对于PMR是必不可少的,但这还不足以产生完全的阻力(Nie等人。2015a,2015b; Berg等。2015)。耐PM的QTL还包含CSMLO家族的其他成员,指出超过1个CSMLO基因参与PM耐药性(Schouten等人。2014)。一项研究将MLO蛋白描述为钙调蛋白蛋白的钙通道蛋白(Gao等人2022),表明钙信号传导与MLO介导的PM抗性有关。但是,PM抗性的组成部分和机制均未完全理解。
抵押贷款行业在贷款生命周期(从申请到服务)中采用了许多技术进步,扩大了消费者的选择范围并降低了成本。即使技术不断进步和采用,抵押贷款流程仍然依赖于人工参与。抵押贷款发起人 (MLO) 必须获得许可或在联邦注册,并对每份抵押贷款申请负责。非银行 MLO 在其打算开展业务的每个州都需要获得许可,并且必须在完成继续教育要求后每年更新这些许可证。联邦住房管理局 (FHA) 和退伍军人事务部 (VA) 也要求经过认证的人类承销商在结案或拒绝之前签署抵押贷款申请。承销商确保使用的信息准确无误,并确定是否有灵活性来让借款人获得资格,而这对于 AI 系统来说可能并不明显。在寻求了解抵押贷款流程中的技术以及当前
摘要葡萄(Vitis Vinifera)是世界上最重要的水果作物之一,遭受了白粉病的产量损失,这是由Erysiphe Necator引起的主要真菌疾病。除了抑制宿主免疫外,植物病原体还调节宿主蛋白所称为易感性因素以促进其在植物中的增殖。在这项研究中,CRISPR/CAS9(群集定期间隔短的短文重复序列/CRISPR相关9)技术用于使MLO的靶向诱变(霉菌抗性基因座O)家族基因被认为是粉状霉菌真菌的S因子。在两个或两个葡萄树Mlo基因VVMLO3和VVMLO4的等位基因中诱导的小缺失或插入,在粉状霉菌敏感的品种Thompson无生物的转基因植物中。使用不同的CRISPR/CAS9构建体获得的编辑效率从0%到38.5%不等。在获得的20个VVMlo3/4编辑的线中,一个是单个突变的纯合子,三个备有的双重突变,突变中有7个是杂合的,九个是嵌合,嵌合是嵌合,如每个线路中有两个以上突变的等位基因所示。在20个VVMLO3/4编辑的葡萄藤线中,有6条显示出正常的生长,而其余的线则表现出衰老样的氯症和坏死。重要的是,四个VVMLO3编辑线显示出对白粉病的耐药性,这与宿主细胞死亡,细胞壁的伴侣(CWA)和H 2 O 2积累有关。综上所述,我们的结果表明,CRISPR/CAS9基因组编辑技术可成功地用于诱导感兴趣基因的靶向突变,以提高经济重要性的特征,例如葡萄藤中的抗病性。
(a)CRISPR/CAS9基因组编辑和重组成分组合在矢量中(请参阅材料和方法1),该材料和方法1)由A. tumefaciens递送至苹果叶条。该载体包含4个GRNA表达对靶DIPM1,DIPM4,HIPM和MLO基因的单位。转化后,将叶条带在补充卡纳米霉素和激素以进行再生的MS板上转移。(b)另外,通过粒子枪仅包含FRT位点之间的序列的编辑矢量的线性化片段。在这里,YFP的编码顺序在CAS9的5'上融合在一起,以检查成功交付并监视转换效率。(c)消除从编辑植物基因组中的编辑成分是通过热休克处理的激活FLP基因的表达
* 通讯作者:Daniel A. Orringer,医学博士,纽约大学,530 First Ave.,SKI 8S,纽约,NY 10016;电话 212-263-0904,Daniel.Orringer@nyulangone.org。‡ 现地址:美国加利福尼亚州旧金山市加利福尼亚大学旧金山分校神经外科系 作者贡献:TCH、SC-P. 和 DAO 构思了这项研究、设计了实验并撰写了论文,并得到了 BP、HL、ARA、EU、ZUF、SL、PDP、TM、MS、PC 和 SSSK 的协助。作者 CWF 和 JT 制作了 SRH 显微镜。TCH、ARA、EU、AVS、TDJ、PC 和 AHS 分析了数据。TDJ 和 TCH 进行了统计分析。 DAO、SLH-J.、HJLG、JAH、COM、ELM、SES、PGP、MBS、JNB、MLO、BGT、KMM、RSD、OS、DGE、RJK、MEI 和 GMM 提供了手术标本以供成像。所有作者均审阅并编辑了手稿。
乳腺癌数据的乳腺癌诊断越来越多地利用了先进的机器学习(ML)技术,以提高准确性,降低假阳性/负面因素,并支持放射科医生在临床决策中。本研究的重点是通过将多视图乳房X线照片分析与最先进的ML算法相结合,以开发用于乳腺癌诊断的概念模型。现代掌管通常强调深度学习(DL)体系结构,例如卷积神经网络(CNN),视觉变形金刚(VIT)和混合模型,这些模型结合了可靠分类的本地和全球特征外推。尤其是多视图方法,分析了颅底(CC)和中外侧倾斜(MLO)观点的互补信息,是提高诊断准确性的基础。变形金刚和基于注意力的机制有助于观看相关性学习,增强集成和解释性。同时,弱监督的技术,例如多个实例学习(MIL),可以使用有限的注释数据进行肿瘤定位和分类。解决与不平衡数据集和数据稀缺性,预处理方法(例如,增强,基于GAN的合成)和转移学习有关的挑战已成为关键工具。可解释的AI(XAI)方法,例如梯度加权类激活映射(Grad-CAM)和Shapley添加说明(SHAP),通过使模型输出与放射性专业知识相结合来改善临床信任。尽管有进步,但仍然存在诸如数据集多样性,模型通用性和建筑标准化之类的障碍。这项研究综合了多视图ML框架,弱监督和解释性中的关键创新,以提出一个稳健的,概念上综合的诊断模型。的发现旨在弥合AI进步和临床适用性之间的差距,为改善乳腺癌筛查结果提供基础。需要进一步的工作来阻止方法论并验证不同人群的模型。