最近,Visual Transformer(VIT)及其以下作品放弃了卷积,并利用了自我发项操作,比CNN获得了可比甚至更高的精度。最近,MLP-Mixer放弃了卷积和自我发项操作,提出了仅包含MLP层的体系结构。为了实现交叉补丁通信,除了通道混合MLP外,它还设计了其他令牌MLP。在诸如JFT-300M之类的极限数据集上进行训练时,它会取得令人鼓舞的结果。,但是当在ImagEnet-1k等中等规模的数据集上训练时,它的表现不如其CNN和VIT对应。MLP混合使用的性能下降激励我们重新考虑令牌混合MLP。我们发现,MLP混合中的令牌混合操作是深度卷积的变体,具有全局接收场和空间特异性配置。在本文中,我们提出了一种新颖的纯MLP体系结构,即空间移位MLP(S 2 -MLP)。不同于MLP混合器,我们的S 2 -MLP仅包含通道混合MLP。我们设计了一个空间换档操作,以实现通过补丁之间的通信。它具有局部接收场,是空间的 - 不可知论。同时,它无参数且有效地计算。在Imagenet-1K数据集训练时,提出的S 2 -MLP比MLP混合剂具有更高的识别精度。同时,S 2 -MLP在ImageNet-1k数据集上具有出色的性能,具有更简单的架构,较少的失败和参数。
摘要:脑电图 (EEG) 信号分类在开发残疾人辅助康复设备中起着重要作用。在此背景下,从 20 名健康人身上获取脑电图数据,然后进行预处理和特征提取过程。提取 12 个时间域特征后,采用两个著名的分类器,即 K 最近邻 (KNN) 和多层感知器 (MLP)。采用五重交叉验证方法将数据分为训练和测试目的。结果表明,MLP 分类器的性能优于 KNN 分类器。MLP 分类器实现了 95% 的分类器准确率,这是最好的。本研究的结果对于在线开发脑电图分类模型以及设计基于脑电图的轮椅非常有用。关键词:运动想象,脑电图信号,KNN,MLP,ICA。介绍
主题:顶点项目 I. 客观问题: 1. 研究人员想要研究性别与使用手机之间的关联。本研究收集的数据将是 ____________。 a. 定性数据 b. 定量数据 c. 连续数据 d. 分类数据 2. 收集数据的主要方式(数据收集过程)? a. 实验 b. 调查 c. 访谈 d. 观察 3. 数据科学家将使用 ___________ 进行预测建模? a. 人工智能 b. 机器学习 c. 训练集 d. 深度学习 4. 哪一个不属于分类损失? a. 对数损失 b. 平均绝对误差 c. 指数损失 d. 铰链损失 5. 哪一个过程不属于顶点项目? a. AI 模型 b. AI 项目周期 c. 部署 d. 数据收集 6. 哪一个不属于回归损失? a. 对数损失 b. 平均绝对误差 c. 对数 cosh 损失 d分位数损失
简介:不可避免地会影响人们的情绪和行为的最常见和广泛的精神状况就是压力。对强大的情感,智力和身体障碍的生理反应可能被视为压力。因此,早期的压力检测可能会导致解决方案,以改善潜在的改进和最终事件抑制。目标:使用MLP分类器对人类的EEG信号分类。方法:我们检查了当前使用的EEG信号分析技术,用于使用多层感知器(MLP)检测精神压力。结果:建议的技术具有95%的分类精度性能。结论:在我们的研究中,使用MLP分类器从EEG信号中检测压力已显示出令人鼓舞的结果。分类器的高精度和精度以及某些EEG频段的信息性质,表明这种方法可能是压力检测和管理的宝贵工具。
尽管具有量子霸权的潜力,但最先进的量子神经网络 (QNN) 仍然受到推理精度低的困扰。首先,当前的噪声中型量子 (NISQ) 设备的错误率高达 10 −3 到 10 −2,大大降低了 QNN 的精度。其次,虽然最近提出的重新上传单元 (RUU) 在 QNN 电路中引入了一些非线性,但其背后的理论尚不完全清楚。此外,以前反复上传原始数据的 RUU 只能提供边际精度改进。第三,当前的 QNN 电路假设使用固定的两量子比特门来强制实现最大纠缠能力,使得无法针对特定任务进行纠缠调整,导致整体性能不佳。在本文中,我们提出了一种量子多层感知器 (QMLP) 架构,该架构具有容错输入嵌入、丰富的非线性和增强的变分电路设计,具有参数化的两量子比特纠缠门。与现有技术相比,QMLP 在 10 类 MNIST 数据集上的推理准确率提高了 10%,量子门数量减少了 2 倍,参数减少了 3 倍。我们的源代码可用,可在 https://github.com/chuchengc/QMLP/ 中找到。
融化回收多层包装(MLP)废物由于具有挑战性的分离程序而难以进行。但是,将技术与兼容器的混合技术可以简化MLP废物融化回收利用。pp-g-GMA是聚烯烃和PET混合物中的常见相容剂。pp-g-gma兼容剂是通过使用苯乙烯作为共同体的175 rpm,50 rpm和10分钟的内部混合器合成的。滴定是一种检查添加BPO引发剂对GMA移植的三个不同序列的效果的方法。使用双螺钉挤出机和模压以制造拉伸测试样品的注射器,将每个序列的PP-GMA样品与MLP废物复合。FTIR分析表明,GMA和苯乙烯单体已接枝到PP聚合物主链上,通过改变混合序列,GMA接枝度。序列3同时将引发剂,GMA和苯乙烯引入PP熔体,得出了PP-GMA,最显着的GMA接枝度为5.11%。将从序列3产生的PP-GMA中添加到MLP熔体中,增强了MLP/PP-G-GMA化合物断裂时的拉伸强度和伸长率的最高增加。
抽象的卷积神经网络(CNN)及其变体已成功应用于基于脑电图(EEG)的运动图像(MI)解码任务。但是,这些基于CNN的算法通常在感知脑电图信号的全球时间依赖性方面存在局限性。此外,他们还忽略了不同脑电图渠道对分类任务的各种贡献。为了解决此类问题,提出了基于脑电图的MI解码的新型基于渠道注意的MLP混合网络(CAMLP-NET)。具体来说,基于MLP的体系结构在此网络中应用于捕获时间和空间信息。注意机制进一步嵌入了MLP混合物中,以适应不同的EEG通道的重要性。因此,提出的CAMLP-NET可以有效地学习更多的全球时间和空间信息。新构建的MI-2数据集的实验结果表明,我们提出的CAMLP-NET比所有比较算法实现了优越的分类性能。
阿尔茨海默病 (AD) 是一种不可逆的中枢神经退行性疾病,而轻度认知障碍 (MCI) 是 AD 的前兆。准确的早期诊断 AD 有利于 AD 的预防和早期干预治疗。尽管已经开发了一些用于 AD 诊断的计算方法,但大多数方法仅采用神经影像学,忽略了可能包含潜在疾病信息的其他数据(例如遗传、临床)。此外,一些方法的结果缺乏可解释性。在这项工作中,我们提出了一种新方法(称为 DANMLP),通过整合结构磁共振成像 (sMRI) 的多模态数据、临床数据(即人口统计学、神经心理学)和 APOE 遗传数据,将双注意卷积神经网络 (CNN) 和多层感知器 (MLP) 结合在一起进行计算机辅助 AD 诊断。我们的 DANMLP 由四个主要组件组成:(1)Patch-CNN,用于从每个局部块中提取图像特征,(2)位置自注意块,用于捕获块内特征之间的依赖关系,(3)通道自注意块,用于捕获块间特征的依赖关系,(4)两个 MLP 网络,分别用于提取临床特征和输出 AD 分类结果。与 5CV 测试中的其他最先进方法相比,DANMLP 在 ADNI 数据库上的 AD vs. MCI 和 MCI vs. NC 任务中实现了 93% 和 82.4% 的分类准确率,分别比其他五种方法高 0.2% ∼ 15.2% 和 3.4% ∼ 26.8%。局部区域的个性化可视化还可以帮助临床医生进行 AD 的早期诊断。这些结果表明,DANMLP 可有效用于诊断 AD 和 MCI 患者。
摘要:基于主动式脑机接口 (BMI) 控制边缘设备的高级认知功能预测是一项改善残疾人生活质量的新兴技术。然而,由于神经元的非平稳性质,维持多单元神经记录的稳定性变得困难,并且会影响主动式 BMI 控制的整体性能。因此,需要定期重新校准以重新训练神经网络解码器以进行主动控制。然而,重新训练可能会导致网络参数(例如网络拓扑)发生变化。就用于实时和低功耗处理的神经解码器的硬件实现而言,修改或重新设计硬件加速器需要时间。因此,处理低功耗硬件设计的工程变更需要大量的人力资源和时间。为了应对这一设计挑战,这项工作提出了 AHEAD:一种用于主动式 BMI 边缘设备中多层感知器 (MLP) 神经网络硬件生成的自动整体能量感知设计方法。通过对主动式 BMI 设计流程进行全面分析,该方法明智地利用了智能位宽识别 (BWID) 和可配置硬件生成,它们自主集成以生成低功耗硬件解码器。所提出的 AHEAD 方法从训练过的 MLP 参数和黄金数据集开始,并在性能、功耗和面积 (PPA) 方面产生高效的硬件设计,同时将准确性损失降至最低。结果表明,与现场可编程门阵列 (FPGA) 上的浮点和半浮点设计相比,所提出的方法性能提高了 4 倍,功耗降低了 3 倍,面积资源减少了 5 倍,并且具有精确的准确性,这使其成为一种有前途的主动式 BMI 边缘设备设计方法。
创建训练数据集时,有必要执行数据的时空匹配。确保两种仪器的匹配数据的时间范围在15分钟内,并且距离范围在1.5公里以内。此外,在Agri像素中,应覆盖至少两个Cloudsat和Calipso像素。匹配后,CloudSat和Calipso检测到的云分数可以更好地表示农业像素内的实际云分数。但是,匹配的数据集中的错误是不可避免的。Agri扫描方法从左到右和上下运行。全磁盘的每个完整扫描需要15分钟,并生成一个数据集。不可能确定完整磁盘中特定点的确切力矩。这将匹配数据集的时间范围限制在15分钟内。但是,在风速较高的区域,云可以在该15分钟的窗口内移动很大的距离。因此,无法避免由时序问题引起的错误。第187-199行裁判员2评论:鉴于这些结果,我认为读者需要确信您选择了合理的