可变形图像配准是医学图像分析的基本步骤。最近,Transformer 已用于配准,其表现优于卷积神经网络 (CNN)。Transformer 可以捕获图像特征之间的长距离依赖性,这已被证明对配准有益。然而,由于自注意力的计算/内存负载高,Transformer 通常用于下采样特征分辨率,无法捕获全图像分辨率下的细粒度长距离依赖性。这限制了可变形配准,因为它需要每个图像像素之间精确的密集对应关系。没有自注意力的多层感知器 (MLP) 在计算/内存使用方面效率高,从而可以捕获全分辨率下的细粒度长距离依赖性。然而,MLP 尚未在图像配准中得到广泛探索,并且缺乏对医学配准任务至关重要的归纳偏差的考虑。在本研究中,我们提出了第一个基于相关感知 MLP 的配准网络 (CorrMLP) 用于可变形医学图像配准。我们的 CorrMLP 在新颖的粗到细配准架构中引入了关联感知多窗口 MLP 块,该架构可捕获细粒度多范围依赖性以执行关联感知粗到细配准。对七个公共医疗数据集进行的大量实验表明,我们的 CorrMLP 优于最先进的可变形配准方法。
文献中已经提出了统计和神经方法来预测医疗保健支出。然而,对比较这两种方法的预测以及医疗保健领域中的集合方法的关注更少。本文的主要目的是评估其预测某些止痛药每周平均支出的能力,以评估不同的统计,神经和集合技术。两个统计模型,持久性(基线)和自回归积分移动平均(ARIMA),一个多层感知器(MLP)模型,一个长期的短期内存(LSTM)模型以及结合ARIMA,MLP预测的集合模型和LSTM模型进行校准,以预测两种不同的止痛药的支出。在MLP和LSTM模型中,我们比较了训练数据的障碍和MLP和节点中某些节点的辍学的影响,并在训练过程中LSTMS中的LSTMS中的复发连接。结果表明,整体模型在两种止痛药中的持久性,Arima,MLP和LSTM模型都优于持久性。一般而言,不助长训练数据并添加辍学有助于MLP模型并助长了训练数据,而没有添加辍学帮助两种药物中的LSTM模型。我们强调了使用统计,神经和集合方法来预测医疗领域结果的时间序列。
尽管隐式神经表征 (INR) 近期取得了进展,但对于基于坐标的 INR 多层感知器 (MLP) 来说,学习跨数据实例的通用表征并将其推广至未见实例仍然具有挑战性。在这项工作中,我们为可推广的 INR 引入了一个简单而有效的框架,该框架使基于坐标的 MLP 能够通过仅调节早期 MLP 层中的一小组权重作为实例模式组合器来表示复杂数据实例;其余 MLP 权重学习跨实例通用表示的模式组合规则。我们的可推广 INR 框架与现有的元学习和超网络完全兼容,可用于学习预测未见实例的调节权重。大量实验表明,我们的方法在音频、图像和 3D 对象等广泛领域都实现了高性能,而消融研究验证了我们的权重调节。
摘要 简介 中度至晚期早产(MLP,孕 32-36 周)儿童约占全球所有早产的 85%。与足月出生的儿童相比,MLP 出生的儿童出现不良神经发育结果的风险更高。尽管 MLP 出生儿童是早产儿中最大的群体,但他们的发育结果与其他早产儿群体相比研究较少。本研究旨在 (1) 比较 9 岁时 MLP 出生儿童与足月出生儿童的神经发育、呼吸健康和脑部磁共振成像 (MRI) 结果;(2) 检查 MLP 出生儿童与足月出生儿童从婴儿期到 9 岁大脑生长轨迹的差异;以及 MLP 出生儿童的大脑生长轨迹的差异;(3) 检查 9 岁时大脑发育和神经发育之间的关系;以及 (4) 确定 9 岁时结果较差的风险因素。方法与分析 “LaPrem”(晚期早产 MRI 研究)是一项纵向队列研究,研究对象为 2010 年至 2013 年期间在澳大利亚墨尔本皇家妇女医院出生的 MLP 儿童和足月对照儿童。参与者在新生儿期招募,并在 2 岁和 5 岁时进行随访。这项为期 9 年的学龄随访包括神经心理学、运动和身体活动、肺功能评估以及脑部 MRI。将使用线性和逻辑回归比较不同出生组之间 9 年后的结果。将使用混合效应模型比较不同出生组之间的大脑发育轨迹。将使用线性和逻辑回归探讨 MRI 与神经发育结果之间的关系,以及其他不良 9 年结果的早期预测因素。伦理与传播 本研究已获澳大利亚墨尔本皇家儿童医院人类研究伦理委员会批准。研究成果将通过同行评审的出版物、会议演示和社交媒体传播。
由于其有效的性能,卷积神经网络(CNN)和视觉变压器(VIT)架构已成为解决计算机视觉任务的标准。此类架构需要大量的数据集,并依靠卷积和自我注意操作。在2021年,MLP-Mixer出现了,与CNN和VIT相比,仅依赖于多层感知器(MLP)并取得极具竞争力的结果。尽管在计算机视觉任务中表现良好,但MLP混合体架构可能不适合图像中的精制功能提取。最近,提出了Kolmogorov-Arnold网络(KAN)作为MLP模型的有希望的替代品。kans有望提高与MLP相比的准确性和可解释性。因此,目前的工作旨在设计一种新的基于混音器的架构,称为Kan-Mixers,使用KAN作为主要层,并根据几个性能指标在图像分类任务中评估其性能。作为主要结果,Kan-Mixers模型在时尚摄影和CIFAR-10数据集中优于MLP,MLP-Mixer和KAN模型,分别为0.9030和0.9030和0.6980,分别为平均精度。
到五年级,学生应该能够阅读和写作。为评估读写能力,GRZ 进行了五年级全国评估调查,通过评估五年级学生的学习成果来衡量教育质量。为衡量学习成绩,GRZ 在英语、数学、生活技能和赞比亚语方面设定了最低水平表现 (MLP) 和理想水平表现 (DLP)。进行调查时,学生至少应达到 MLP,以证明其掌握了基本的读写能力和算术能力,理想情况下应达到 DLP,以证明其高级掌握了所测试的知识和技能。然而,如图 4 所示,赞比亚 2014 年五年级全国学习成绩评估发现,只有 21.8% 的学生达到了英语 MLP,33% 达到了数学 MLP。大多数学生(英语 74.7% 和数学 57.2%)低于设定的最低标准。小学学习成果不佳导致小学升入初中的升学率较低。
摘要:中风是大脑血液供应突然中断,影响一条或多条滋养大脑的血管。这会导致大脑供氧紊乱或不足,从而导致脑细胞损伤或受损。在某些情况下,确定中风的时间和严重程度可能具有挑战性。本研究提出了一种基于人工智能的 EMS(ElasticNet - MLP - SMOTE)模型,具体利用两种机器学习算法,即 Elastic Net 和多层感知器 (MLP),并使用合成少数过采样技术 (SMOTE)。Elastic Net 算法用于特征选择以识别关键特征,然后使用 MLP 算法进行预测。使用 Elastic Net 算法是因为它结合了 L 2 和 L 1 正则化,在辨别影响模型性能的特征方面提供了良好的结果。使用 MLP 算法是因为它依赖于深度学习技术,在这种情况下产生了有希望的结果。该算法从包含与中风相关的基本特征的综合数据集中对数据进行分类。SMOTE 用于提高模型的性能。值得注意的是,之前没有研究将这三种技术(Elastic Net – MLP – SMOTE)结合在一起。EMS 的预测准确率达到 95%,MSE = 0.05。该模型有助于根据患者的历史数据预测中风的发生,从而缓解这种严重疾病的突然发作。
摘要 - 在网络链接上预测带宽利用率对于检测拥塞以在发生之前对其进行纠正非常有用。在本文中,我们提出了一种解决方案,可以预测不同网络链接之间的带宽利用率,其精度非常高。创建了一个模拟网络,以收集与每个接口上网络链接的性能有关的数据。这些数据通过功能工程进行处理和扩展,以创建培训集。我们评估和比较了三种类型的机器学习算法,即Arima(自回归的集成移动平均线),MLP(多层感知器)和LSTM(长期短期记忆),以预测未来的带宽消耗量。LSTM的表现优于Arima和MLP,其预测非常准确,很少超过3%的误差(Arima为40%,MLP为20%)。然后,我们证明建议的解决方案可以通过由软件定义网络(SDN)平台管理的反应实时使用。索引术语 - 国王检测,LSTM,MLP,Arima,实时带宽预测
提交轨道 摘要 提交日期:2024 年 11 月 7 日 糖尿病是一种慢性代谢疾病,其特征是由于身体产生胰岛素的能力受损而导致血糖水平高(高血糖症)。根据国际糖尿病联合会 (IDF) 的数据,糖尿病患者的数量将在 2024 年迅速增加到 7 亿人。因此,我们需要找出感染糖尿病的诱因。其中之一是使用机器学习方法。机器学习用于对哪些因素可能导致感染糖尿病进行分类。进行这种分类的众所周知的方法之一是多层感知器 (MLP) 方法,它是一种由多层组成的人工神经网络 (ANN),其中每层都有相互连接的节点。它的优点是它能够处理复杂数据特征之间的非线性关系——包括患者数据和患者的疾病——因此据说这种方法与本研究非常相关。研究人员还将 MLP 的准确率与其他几种算法(如随机森林、支持向量机和 K-最近邻)进行了比较。这旨在评估 MLP 与其他方法相比在糖尿病分类中的有效性。此外,研究人员还希望克服传统方法在糖尿病分类中的弱点,并提供基于人工智能的解决方案,方法是利用 MLP 处理医疗数据并关注可能影响糖尿病患者的参数或特征。机器学习中的几种技术,如正则化和超参数优化可以防止过度拟合,数据规范化和降维可用于提高模型输入的质量,从而最大限度地提高准确率并使诊断过程更快、更准确。结果表明,与其他算法相比,MLP 在对该疾病进行分类方面具有良好的性能。MLP 获得更稳定、更高的结果。总体而言,可以说 MLP 的应用对改善糖尿病诊断系统做出了重大贡献,有望应用于医疗系统。