融化回收多层包装(MLP)废物由于具有挑战性的分离程序而难以进行。但是,将技术与兼容器的混合技术可以简化MLP废物融化回收利用。pp-g-GMA是聚烯烃和PET混合物中的常见相容剂。pp-g-gma兼容剂是通过使用苯乙烯作为共同体的175 rpm,50 rpm和10分钟的内部混合器合成的。滴定是一种检查添加BPO引发剂对GMA移植的三个不同序列的效果的方法。使用双螺钉挤出机和模压以制造拉伸测试样品的注射器,将每个序列的PP-GMA样品与MLP废物复合。FTIR分析表明,GMA和苯乙烯单体已接枝到PP聚合物主链上,通过改变混合序列,GMA接枝度。序列3同时将引发剂,GMA和苯乙烯引入PP熔体,得出了PP-GMA,最显着的GMA接枝度为5.11%。将从序列3产生的PP-GMA中添加到MLP熔体中,增强了MLP/PP-G-GMA化合物断裂时的拉伸强度和伸长率的最高增加。
关于本文档 未来风暴团队的成员完成了这个集体战略研究项目,这是完成美国陆军战争学院 (USAWC) 战略研究硕士课程的先决条件。本报告的研究、分析和制作于 2023 年 10 月至 2024 年 5 月作为 2024 学年陆军未来研讨会的一部分进行。 要求 本报告基于开源信息和对主题专家的采访,回答了美国陆军未来司令部指挥官詹姆斯·E·雷尼将军提出的一个战略问题。(见附件 A) 2030 年至 2040 年期间的人机集成 (HMI) 将如何改变作战特征,并需要整个 DOTMLPF-P 进行变革以在未来军事冲突中获得或保持竞争优势?
摘要:为了确定地热来源的最佳和最有效的储层温度,使用专门设备的长期现场研究和分析是必不可少的。尽管这些要求增加了项目成本并引起延迟,但基于水力地球化学数据的机器学习技术可以通过准确预测储层温度来最大程度地减少损失。近年来,将混合方法应用于现实世界中的挑战已经变得越来越普遍,而不是传统的机器学习方法。这项研究介绍了一种新型的机器学习AP-aosma-MLP,它集成了自适应对立的粘液模具算法(AOSMA)和多层感知器(MLP)技术,该技术专门设计用于预测地层资源的储存。此外,在同等条件下,使用各种评估回归指标,在文献中比较了文献中基本的人工神经网络和文献中广泛认识的算法。结果表明,AOSMA-MLP的表现优于基本MLP和其他基于元启发式的MLP,而经AOSMA训练的MLP实现了最高的性能,以R 2值为0.8514。提出的AOSMA-MLP方法显示出在各种回归问题中产生有效结果的显着潜力。
mtDNA中的突变速率比核DNA高约10倍,这可能是由于次要修复系统,暴露于氧化磷酸化产生的无氧自由基以及缺乏保护性组蛋白所产生的无氧自由基。NT 45-287和NT 16105-16348之间的区域被认为是高变量的。线粒体DNA没有内含子,几乎没有基因间区域。因此,大多数序列更改将影响编码序列。mtDNA的转录是多物质的,这意味着将两个(“重”和“轻”)DNA链编码的所有基因转录为两个大型前体RNA链。线粒体基因组中任何地方的缺失也可能影响其他基因的转录或翻译,即使它们的序列完好无损。结果,各种尺寸的缺失可能导致相似的表型。遗传的mtDNA异常是母体的,因为所有线粒体都来自卵子。
简介:不可避免地会影响人们的情绪和行为的最常见和广泛的精神状况就是压力。对强大的情感,智力和身体障碍的生理反应可能被视为压力。因此,早期的压力检测可能会导致解决方案,以改善潜在的改进和最终事件抑制。目标:使用MLP分类器对人类的EEG信号分类。方法:我们检查了当前使用的EEG信号分析技术,用于使用多层感知器(MLP)检测精神压力。结果:建议的技术具有95%的分类精度性能。结论:在我们的研究中,使用MLP分类器从EEG信号中检测压力已显示出令人鼓舞的结果。分类器的高精度和精度以及某些EEG频段的信息性质,表明这种方法可能是压力检测和管理的宝贵工具。
阿尔茨海默病 (AD) 是一种不可逆的中枢神经退行性疾病,而轻度认知障碍 (MCI) 是 AD 的前兆。准确的早期诊断 AD 有利于 AD 的预防和早期干预治疗。尽管已经开发了一些用于 AD 诊断的计算方法,但大多数方法仅采用神经影像学,忽略了可能包含潜在疾病信息的其他数据(例如遗传、临床)。此外,一些方法的结果缺乏可解释性。在这项工作中,我们提出了一种新方法(称为 DANMLP),通过整合结构磁共振成像 (sMRI) 的多模态数据、临床数据(即人口统计学、神经心理学)和 APOE 遗传数据,将双注意卷积神经网络 (CNN) 和多层感知器 (MLP) 结合在一起进行计算机辅助 AD 诊断。我们的 DANMLP 由四个主要组件组成:(1)Patch-CNN,用于从每个局部块中提取图像特征,(2)位置自注意块,用于捕获块内特征之间的依赖关系,(3)通道自注意块,用于捕获块间特征的依赖关系,(4)两个 MLP 网络,分别用于提取临床特征和输出 AD 分类结果。与 5CV 测试中的其他最先进方法相比,DANMLP 在 ADNI 数据库上的 AD vs. MCI 和 MCI vs. NC 任务中实现了 93% 和 82.4% 的分类准确率,分别比其他五种方法高 0.2% ∼ 15.2% 和 3.4% ∼ 26.8%。局部区域的个性化可视化还可以帮助临床医生进行 AD 的早期诊断。这些结果表明,DANMLP 可有效用于诊断 AD 和 MCI 患者。
尽管具有量子霸权的潜力,但最先进的量子神经网络 (QNN) 仍然受到推理精度低的困扰。首先,当前的噪声中型量子 (NISQ) 设备的错误率高达 10 −3 到 10 −2,大大降低了 QNN 的精度。其次,虽然最近提出的重新上传单元 (RUU) 在 QNN 电路中引入了一些非线性,但其背后的理论尚不完全清楚。此外,以前反复上传原始数据的 RUU 只能提供边际精度改进。第三,当前的 QNN 电路假设使用固定的两量子比特门来强制实现最大纠缠能力,使得无法针对特定任务进行纠缠调整,导致整体性能不佳。在本文中,我们提出了一种量子多层感知器 (QMLP) 架构,该架构具有容错输入嵌入、丰富的非线性和增强的变分电路设计,具有参数化的两量子比特纠缠门。与现有技术相比,QMLP 在 10 类 MNIST 数据集上的推理准确率提高了 10%,量子门数量减少了 2 倍,参数减少了 3 倍。我们的源代码可用,可在 https://github.com/chuchengc/QMLP/ 中找到。
凭借性能密度和每瓦性能方面的业界领先进步,Qualcomm Cloud AI 100 平台在最新基准测试的所有评分卡中均处于领先地位。
用于空间领域感知应用的加速 AI 驱动大气预测 丹尼·费尔顿 诺斯罗普·格鲁曼公司 玛丽·艾伦·克拉多克、希瑟·凯利、兰德尔·J·阿利斯、埃里克·佩奇、杜安·阿普林 诺斯罗普·格鲁曼公司 摘要 太空激光和监视应用经常受到大气效应的影响。气溶胶、云和光学湍流引起的大气衰减和扭曲会产生有害影响,从而对任务结果产生负面影响。2019 年 AMOS 会议上简要介绍的一篇论文介绍了 2017 年在哈莱阿卡拉峰安装的地面仪器。这些仪器仍在积极收集数据,它们正在提供前所未有的空间环境实时表征,包括精确的大气传输损耗。虽然实时测量是理解和表征空间环境的第一步,但仅靠它们是不够的。为了优化任务规划,许多应用都需要对空间环境进行准确的短期大气预测。虽然大气预报并不是什么新鲜事,但最近随着 21 世纪人工智能 (AI) 技术的应用,大气预报的技能得到了极大提升。这些技术是高性能计算 (HPC) 和深度学习 (DL) 的结合。本演讲的主题是使用来自地面大气收集系统的 TB 级数据训练预测模型,并使用图形处理单元 (GPU) 加速其训练和推理的能力。本研究侧重于预测的三个时间尺度。这些时间尺度包括短期(0 到 60 分钟)、中期(1 小时到 3 小时)和长期(3 到 48 小时)。这些时间尺度代表激光和/或监视应用和任务的各种决策点。在短期预测情况下,多种 DL 技术应用于从光学地面站 (OGS) 收集的本地数据。这些 DL 技术包括使用 U-Net 卷积神经网络和多层感知器 (MLP) 和随机森林 (RF) 模型的集合。 MLP 用于从激光云高仪和红外云成像仪 (ICI) 等仪器收集的点数据。对于中间时间尺度,卷积长短期记忆 (LSTM) 网络和 U-Net 均使用来自 NOAA 地球静止卫星云图集合的图像进行训练。最后,组合 U-Net 和自动编码器神经网络用于训练由 HPC 数值天气预报 (NWP) 模型模拟的大气预测器以进行长期预测。NWP 会产生许多 TB 的数据,因此,使用这些神经网络是优化其预测能力的理想选择。本研究利用了多种 HPC 资源。其中包括由四个 NVIDIA Tesla V100 GPU 组成的内部 GPU 节点以及毛伊高性能计算中心 (MHPCC) 的资源。结果表明,在几乎所有情况下,这些预测技术都优于持久性,而且偏差很小。使用 HPC 和 DL 推理实时进行预测的能力是未来的重点,将在会议上报告。1. 简介大气衰减和失真降低了太空激光和监视应用的功效。特别是,云层可以部分或完全遮挡目标,并阻止或要求降低光通信系统的数据速率。但是,通过准确表征和预测大气影响,可以减轻许多负面影响。本研究的目的是开发和完善一种最先进的大气预测系统,该系统可生成高分辨率的大气衰减预测,以支持太空激光和监视应用的决策辅助。为了实现这一目标,HPC 和 AI 的进步与数 TB 的高分辨率地面和太空大气数据集合相结合。多种 HPC 资源用于处理本研究所需的地面和卫星数据,并使用四个 NVIDIA Tesla V100 GPU 加速 AI 预测技术的训练和推理。该技术用于进行多时间尺度大气预测:1 小时预测、2 小时以上预测和 48 小时预测。最长 1 小时;最长 2+ 小时;最长 48 小时。最长 1 小时;最长 2+ 小时;最长 48 小时。
摘要:基于主动式脑机接口 (BMI) 控制边缘设备的高级认知功能预测是一项改善残疾人生活质量的新兴技术。然而,由于神经元的非平稳性质,维持多单元神经记录的稳定性变得困难,并且会影响主动式 BMI 控制的整体性能。因此,需要定期重新校准以重新训练神经网络解码器以进行主动控制。然而,重新训练可能会导致网络参数(例如网络拓扑)发生变化。就用于实时和低功耗处理的神经解码器的硬件实现而言,修改或重新设计硬件加速器需要时间。因此,处理低功耗硬件设计的工程变更需要大量的人力资源和时间。为了应对这一设计挑战,这项工作提出了 AHEAD:一种用于主动式 BMI 边缘设备中多层感知器 (MLP) 神经网络硬件生成的自动整体能量感知设计方法。通过对主动式 BMI 设计流程进行全面分析,该方法明智地利用了智能位宽识别 (BWID) 和可配置硬件生成,它们自主集成以生成低功耗硬件解码器。所提出的 AHEAD 方法从训练过的 MLP 参数和黄金数据集开始,并在性能、功耗和面积 (PPA) 方面产生高效的硬件设计,同时将准确性损失降至最低。结果表明,与现场可编程门阵列 (FPGA) 上的浮点和半浮点设计相比,所提出的方法性能提高了 4 倍,功耗降低了 3 倍,面积资源减少了 5 倍,并且具有精确的准确性,这使其成为一种有前途的主动式 BMI 边缘设备设计方法。