BUSINESS ACTIVITY REGISTRANT POPULATION PHYSICIANS 1,394,320 MID LEVEL PRACTITIONER (MLP) 541,549 PHARMACY 69,807 HOSPITAL/CLINIC 19,235 TEACHING INSTITUTION 256 MANUFACTURING 582 DISTRIBUTOR 645 CANINE HANDLERS 3,004 RESEARCHER (I) 834 RESEARCHER (II-IV) 8,364 ANALYTICAL LAB 1,551 IMPORTER 273 EXPORTER 273 REVERSE分销商76麻醉治疗计划(NTP)2,178
商业活动 注册人口 医生 1,394,320 中级执业医师 (MLP) 541,549 药房 69,807 医院/诊所 19,235 教学机构 256 制造业 582 分销商 645 犬类饲养员 3,004 研究员 (I) 834 研究员 (II-IV) 8,364 分析实验室 1,551 进口商 273 出口商 273 反向分销商 76 麻醉品治疗计划 (NTP) 2,178
摘要 电力系统的可靠运行是电力公司的一个主要目标,这需要准确的可靠性预测以最大限度地减少电力中断的持续时间。由于天气状况通常是智能电网(尤其是其配电网)电力中断的主要原因,本文全面研究了各种天气参数对配电网可靠性性能的综合影响。特别地,提出了一种基于多层感知器 (MLP) 的框架,使用常见天气数据的时间序列来预测一个配电管理区域中每日持续和瞬时电力中断的次数。首先,实施参数回归模型来分析每日电力中断次数与各种常见天气参数(如温度、降水量、气压、风速和闪电)之间的关系。然后将选定的天气参数和相应的参数模型作为输入,以建立 MLP 神经网络模型来预测每日电力中断次数。引入了一种改进的基于极限学习机 (ELM) 的分层学习算法,使用来自佛罗里达州电力公司的实时可靠性数据和来自国家气候数据中心 (NCDC) 的常见天气数据来训练制定的模型。此外,还实施了敏感性分析以确定各种影响
本文提出了一个深度学习模型,挑战了公司破产这一金融领域的已知知识。具体来说,我们构建了一个用于预测公司破产的多层感知器 (MLP) 模型,并对其进行了分析,以直观地显示哪些输入参数对模型的准确性最重要。该模型使用大约 55,000 行数据、数据清理和超参数优化,在 120 个时期和 30 次试验后实现了 82.8% 的平均准确率和 0.0678% 的标准差,这是一个出色的结果。该模型优于两个进行比较的支持向量机 (SVM) 模型,并表现出良好的泛化能力。然而,非线性 SVM 模型产生了 20.48% 的假阳性,准确率为 71.96%,而 MLP 模型产生了 25.1% 的假阳性。因此,如果减少假阳性的数量更重要,那么尽管准确率较低,但 SVM 模型可能是更可取的。分析输入参数后发现,员工人数、离职组和股权比例是对破产预测影响最大的输入参数。由此得出结论,这些参数可能是分析一家公司是否会破产时最重要的因素。
摘要。随着深度学习 (DL) 的进步,人们对可再生能源产量预测的关注度日益增加。可再生能源固有的多变性和预测方法的复杂性要求可再生能源领域采用稳健的方法,例如 DL 模型。与传统机器学习 (ML) 相比,DL 模型更受欢迎,因为它们可以捕捉可再生能源数据集中复杂的非线性关系。本研究通过比较 DL 框架内的各种方法和训练/测试比率,研究了影响 DL 技术准确性的关键因素,包括采样和超参数优化。使用结合了来自 12 个地点的天气和光伏电力输出数据的数据集,评估了七种机器学习方法——LSTM、Stacked LSTM、CNN、CNN-LSTM、DNN、时间分布式 MLP (TD-MLP) 和自动编码器 (AE)。应用早期停止、神经元丢失和 L1/L2 正则化等正则化技术来解决过度拟合问题。结果表明,早期停止、dropout 和 L1 正则化的组合对于减少具有较大训练集的 CNN 和 TD-MLP 模型中的过度拟合效果最佳,而早期停止、dropout 和 L2 正则化的组合对于减少具有较小训练集的 CNN-LSTM 和 AE 模型中的过度拟合效果最有效。
摘要。住宅房地产价格预测对于评估市场价值并确定价格过高或定价不足至关重要。这项研究研究了各种机器学习算法的性能,包括决策树(DT),Random Forest(RF)和多层Perceptron(MLP),以预测住宅物业价格。该研究执行探索性数据分析和主要成分分析(PCA),以降低变量的维度,并提取马来西亚吉隆坡梯田房价的最有用的变量。一个公开可用的数据集用于培训和测试算法,在预处理过程后的比例为70:30。性能指标,例如Kappa统计,R -Squared,平均绝对误差(MAE),平均绝对百分比误差(MAPE)和根平方误差(RMSE)来评估算法。结果表明,RF的表现优于DT和MLP,获得85.82%的最高精度得分,最高的KAPPA统计数据为0.8307。研究还发现,RF算法的预测数据与火车集可靠。进行探索性数据分析和PCA后,RF-PCA证明了住宅物业价格预测的最佳性能,与DT-PCA和MLP-PCA相比,MAE(0.6091),MAPE(19.23%)和RMSE(1.066)的R平方值为0.7497,MAE(0.6091),MAPE(19.23%)和RMSE(1.066)。
摘要 - Billy Buddy反对网络欺凌的“基本上是为解决网络欺凌的安全空间,包括两个主要模块:管理员和用户。管理员模块包括安全登录,状态数据分析和用户管理,而用户模块允许注册,事件报告,与已解决类似问题的其他人进行讨论以及标记解决问题的问题。该平台通过OTP,配置文件管理为用户提供了密码恢复选项,并使用高级机器学习算法,其中包括随机森林,MLP分类器和ADABOOST来检测和分类网络欺凌。它是在Python,MySQL和Django中开发的,在HTML,CSS和JavaScript中具有直观的接口。“比利·巴迪(Billy Buddy)针对网络欺凌”的目的是针对一个有用的环境,用户可以利用先进的技术来解决这个严重的社会问题,并使数字世界成为更安全的地方,从而在其中用户可以报告和解决网络欺凌事件。Index Terms - Cyberbullying, Machine Learning, Random Forest, MLP Classifier, AdaBoost, Flask, Django, MySQL, Python, User Module, Admin Module, Problem Registration, Chat Support, Profile Management, State- wise Analysis, Data Classification, Web-based Platform, Cyberbullying Prevention, User Interaction, Secure Login, Dashboard, Sentiment Analysis.
建模3D对象有效地成为计算机视觉研究中的一个核心主题。传统代表涉及几何表示的网格,体素网格以存储SDF或占用率之类的值或用于外观建模的UV地图。由于其离散的性质,其表示功能受硬件限制的约束。采用多层感知器(MLP)允许形状[5,10,22,29,30],辐射场[24],纹理[17,20,28,47]等的高质量表示。Mildenhall等。[24]表明,高视觉保真度是使用频率编码来编码功能的关键。近年来,由于使用较小的MLP,大大提高了训练和推理速度,多分辨率参数编码变得越来越流行。尽管如此,由于其直观的编辑功能和有利的动画可能性,许多应用程序仍然依赖网格作为对象表示。不幸的是,直接在网格上进行了少数作品铲球外观建模。先前的工作将纹理直接作为3D空间中的连续函数回归[28],并使用频率编码[1,40]。内在的编码[17]也被引入以解锁更大的视觉细节。Mahajan等。[20]提出了一个有效的多解决顶点 -
摘要:印度尼西亚目前正在进行能源转型,从严重依赖化石燃料转向更清洁的能源,以在 2060 年实现净零排放。除了减少对化石燃料的依赖之外,作为地热储量最多的国家之一,优化印度尼西亚的地热能源可能是促进能源转型的关键。本文的目的是通过分析外生和内生因素对这两个部门供应链结构的影响,阐述结合化石燃料不稳定和地热能源增长的转型过程。本研究采用涉及印度尼西亚地热利益相关者的研讨会,结合多层次视角 (MLP) 框架作为理论视角。研究发现,能源需求、环境意识、能源法规、能源供应链和地热潜力突破是与 MLP 组成部分相关的重要方面,即社会技术格局、社会技术制度和利基创新。社会技术环境是外生因素,它对能源部门制度施加压力,允许地热创新形式的利基创新渗透到化石燃料制度中,使其过渡到地热制度。过渡途径包括通过一系列计划和激励措施,可以分解化石燃料并建立地热能源的若干措施。
机器了解和基于记录的完全预测和诊断冠状动脉疾病的技术可能是一项非凡的医疗收益,但这是改进的主要意义。在许多国家 /地区,可能缺乏心血管专业人员,并且可以通过对虚拟患者信息的医疗决策分析来建立正确且强大的早期心脏预测来解决大量误诊的实例。这是针对目的,以挑选出过多的跨性能设备,以了解用于此类诊断目的的变体。已经使用了几种使用小工具到知识的算法,这些算法可能与预测心脏病的准确性和准确性相比。每个细节的重要性得分限制为除MLP和KNN以外使用的所有算法。所有元素都是完全基于成本点来计算的,以找到提供高危险冠心病预后的人。外观发现,使用Kaggle的3段心脏数据库,基于Pro-K(KNN),选择树(DT)和随机森林(RF)RF技术算法完成了97-2%的精度和97.2%的敏感性。因此,我们观察到,可以使用一组规则的易于监督的机器可以使用最佳的准确性和最令人满意的用途来使冠心病的猜想。关键字:MLP,KNN,选择树,随机森林,心脏数据库。