根据 1976 年《大都会土地规划法》及其后续所有修正案,芒德市必须完成并更新综合规划。《大都会土地规划法》 (MLPA) 解决了双城大都会区内地方政府单位的相互依赖问题,并要求采用协调的规划和方案。在制定规划时,规划机构必须与其他市政府机构、邻近社区、学区和县合作,以确保协调的区域规划。MLPA 还要求大都会委员会为大都会区制定全面的发展指南。
补充方法 DNA 分离 使用自动 DNA 提取仪按照其协议(chemagic MSM I,PerkinElmer,美国马萨诸塞州沃尔瑟姆)从血液样本中分离 DNA。 使用试剂盒“EZ1&2 DNA Tissue”(Qiagen,德国希尔登)按照协议使用自动 DNA 提取仪 EZ1 Advanced XL(Qiagen)从羊膜细胞和绒毛中分离 DNA。 染色体微阵列(CMA) 使用 SureTaq DNA 标记试剂盒(Agilent,美国加利福尼亚州圣克拉拉)标记 DNA,并根据制造商的说明在 GenetiSure Cyto 4x180K CGH 微阵列(Agilent)上进行杂交。使用 InnoScan 910 AL 扫描仪(Innopsys,Carbonne,法国)扫描载玻片,并使用分析程序 Mapix(Innopsys)和 CytoGenomics 版本 5.1.2.1 和 5.3.0.14(Agilent)进行处理。使用参考基因组 GRCh38 评估数据。染色体分析和荧光原位杂交使用标准方法从肝素血样以及绒毛和羊膜细胞培养物中进行中期制备。简而言之,将来自肝素血样的细胞培养在含有植物血凝素作为有丝分裂原的 LymphoGrow 培养基(CytoGen,Sinn,德国)中,羊膜细胞培养在 Amniogrow plus 培养基(Cytogen,Sinn,德国)中,CVS 细胞培养在 Chang 培养基 D(Fujifilm,Minato,日本)中。固定后,将中期细胞滴到载玻片上,然后在 60 °C 下干燥过夜。使用核型分析系统 Ikaros(MetaSystems,德国阿尔特鲁斯海姆)通过 GTG 显带评估中期染色体的扩散情况。对于 FISH 分析,使用 Empire Genomics(美国纽约州布法罗)的探针 RP11-213E22-green 和 RP11-577D9-orange(7 号染色体)以及 RP11-358H10-green 和 RP11-241M19-orange(16 号染色体)。所有探针均按照制造商的说明使用。使用 Isis 数字成像系统(Metasystem Inc.,德国阿尔特鲁斯海姆)分析图像。 PCR 和测序 在适用的情况下,确认并进一步指定 OGM 分析中的断点,方法是使用 MinION 测序仪(Oxford Nanopore,英国牛津)进行第三代长距离测序,或使用 Hitachi 3500xL 基因分析仪(Thermo Fisher Scientific,美国马萨诸塞州沃尔瑟姆)进行 Sanger 测序。引物是根据 Dremsek et al., 2021 中描述的策略设计的。为了将引物定位得尽可能靠近预期的断点,OGM 数据和 CMA 数据都融入了其设计中。为了分析P1,进行了长距离PCR(连接点B/D*的扩增子:正向引物:5'-ggaggacaattttatcccccaggg-3'和反向引物:5'-gtgagccgtgagtttgccactat-3';连接点D*/B*的扩增子:正向引物:5'-tcgttgacggtgaaatgctacgt-3'和反向引物:5'-gcagataacggagtgaggaaggc-3')。PCR扩增后,使用引物 5' -acagctcactatagcagataggtgt- 3'、5' - ttgcatcaggaacatgtggacct- 3'、5' -ctggtcacaggcgcaaatcaaag- 3'、5' -gtcagcaaaggagagaagcagct- 3' 和 5' - gcaggttggctctttcccaagta- 3' 制备连接点 B/D* 的扩增子(大小为 4 kbp)进行 Sanger 测序。使用引物 5' -agggaaaagagatgtgtaaaatactgt- 3', 5' -agatgaggaagggcatctgac- 3', 5' -tcaagttgtcattgtggtgaatt- 3', 5' - cagatgccagcgctaagacgat- 3', 5' -aggttattacacacccctcct- 3', 5' -tgttcattatcactggccatcaga- 3', 5' -aaggggaaacctcctgctactct- 3', 5' - tgcacccactaacgtgtcatcta- 3', 5' -gggttggttccaagtctttgcta- 3', 5' -gctgaaactggatcccttcctta- 制备连接点 D*/B* 的扩增子(大小为 13 kbp),进行 Sanger 测序。 3'、5' -tgtagggacatggatgaaattgg- 3' 和 5' -ccaaacaccgcatattctcactc- 3'。为了分析 P3,进行了长距离 PCR(正向引物:5' -ttaccacgaaagagcaaacggtga- 3' 和反向引物:5' - aacgttattccttccagtcacccac- 3')。PCR 扩增后,根据制造商的方案(SQK -LSK109,Oxford Nanopore),制备 9 kbp 大小的扩增子以在 MinION 106D 流动槽上进行测序。对于家族检测,建立了 PCR,使用倒位特异性引物 5' -tgcctctgcttaataggaagttttgg- 3' 和 5' - cagccaataacgtgagtttaggagt- 3'(产生 1247 bp 扩增子),以及野生型引物 5' - cagccaataacgtgagtttaggagt- 3' 和 5' -ctgttgaaggacacaagctctggc- 3'(产生 778 bp 扩增子)(见 S.3)。MLPA 分析进行多重连接依赖性探针扩增 (MLPA) 以验证在 CMA 中检测到的增益并测试亲属的携带者状态。对于 MLPA,将 DNA 与探针杂交并根据制造商的说明进行扩增。使用 Hitachi 3500xL 基因分析仪(Thermo Fisher)对扩增的 DNA 进行片段分析,并使用 SeqPilot(JSI,德国埃滕海姆)分析程序处理数据。用于所呈现的临床病例的 MLPA 探针组是 P034-B2、P035-B1(P1)和 P216-C1(P3)(MRC-Holland,荷兰阿姆斯特丹)。5' -tgtagggacatggatgaaattgg- 3' 和 5' -ccaaacaccgcatattctcactc- 3'。为了分析 P3,进行了长距离 PCR(正向引物:5' -ttaccacgaaagagcaaacggtga- 3' 和反向引物:5' - aacgttattccttccagtcacccac- 3')。PCR 扩增后,根据制造商的方案(SQK -LSK109,Oxford Nanopore),制备 9 kbp 大小的扩增子以在 MinION 106D 流动池上进行测序。对于家族检测,建立了 PCR,使用倒位特异性引物 5' -tgcctctgcttaataggaagttttgg- 3' 和 5' - cagccaataacgtgagtttaggagt- 3'(产生 1247 bp 扩增子),以及野生型引物 5' - cagccaataacgtgagtttaggagt- 3' 和 5' -ctgttgaaggacacaagctctggc- 3'(产生 778 bp 扩增子)(见 S.3)。MLPA 分析进行多重连接依赖性探针扩增 (MLPA) 以验证在 CMA 中检测到的增益并测试亲属的携带者状态。对于 MLPA,将 DNA 与探针杂交并根据制造商的说明进行扩增。使用 Hitachi 3500xL 基因分析仪(Thermo Fisher)对扩增的 DNA 进行片段分析,并使用 SeqPilot(JSI,德国埃滕海姆)分析程序处理数据。用于所呈现的临床病例的 MLPA 探针组是 P034-B2、P035-B1(P1)和 P216-C1(P3)(MRC-Holland,荷兰阿姆斯特丹)。5' -tgtagggacatggatgaaattgg- 3' 和 5' -ccaaacaccgcatattctcactc- 3'。为了分析 P3,进行了长距离 PCR(正向引物:5' -ttaccacgaaagagcaaacggtga- 3' 和反向引物:5' - aacgttattccttccagtcacccac- 3')。PCR 扩增后,根据制造商的方案(SQK -LSK109,Oxford Nanopore),制备 9 kbp 大小的扩增子以在 MinION 106D 流动池上进行测序。对于家族检测,建立了 PCR,使用倒位特异性引物 5' -tgcctctgcttaataggaagttttgg- 3' 和 5' - cagccaataacgtgagtttaggagt- 3'(产生 1247 bp 扩增子),以及野生型引物 5' - cagccaataacgtgagtttaggagt- 3' 和 5' -ctgttgaaggacacaagctctggc- 3'(产生 778 bp 扩增子)(见 S.3)。MLPA 分析进行多重连接依赖性探针扩增 (MLPA) 以验证在 CMA 中检测到的增益并测试亲属的携带者状态。对于 MLPA,将 DNA 与探针杂交并根据制造商的说明进行扩增。使用 Hitachi 3500xL 基因分析仪(Thermo Fisher)对扩增的 DNA 进行片段分析,并使用 SeqPilot(JSI,德国埃滕海姆)分析程序处理数据。用于所呈现的临床病例的 MLPA 探针组是 P034-B2、P035-B1(P1)和 P216-C1(P3)(MRC-Holland,荷兰阿姆斯特丹)。
• 0101U:遗传性结肠癌疾病(例如,林奇综合征、PTEN 错构瘤综合征、考登综合征、家族性腺瘤性息肉病),基因组序列分析面板利用 NGS、Sanger、MLPA 和阵列 CGH 的组合,并使用 MRNA 分析来解决指示时意义不明的变异(15 个基因 [测序和缺失/重复]、EPCAM 和 GREM1 [仅缺失/重复])。此 PLA 代码适用于 ColoNext ® 测试。• 0102U:遗传性乳腺癌相关疾病(例如,遗传性乳腺癌、遗传性卵巢癌、遗传性子宫内膜癌),基因组序列分析面板利用 NGS、Sanger、MLPA 和阵列 CGH 的组合,并使用 MRNA 分析来解决指示时意义不明的变异(17 个基因 [测序和缺失/重复])。此 PLA 代码适用于 BreastNext ® 测试。 • 0103U:遗传性卵巢癌(例如遗传性卵巢癌、遗传性子宫内膜癌),基因组序列分析面板利用 NGS、Sanger、MLPA 和阵列 CGH 的组合,并结合 MRNA 分析以解决指示时意义不明的变异(24 个基因 [测序和缺失/重复]、EPCAM [仅缺失/重复])。此 PLA 代码适用于 OvaNext ® 测试。以下 PLA 代码适用于 Praxis (TM) 扩展 RAS 面板测试:
17:34902695-36249430 1346.74 ncdr no Core ** IA-2A阳性T1D MLPA NMR:Norwegian Mody注册表; NCDR:挪威儿童糖尿病注册表。(*)此删除以前在注册表中已识别并记录了吗?(**)NMR核心和NCDR核心分析中包含的致病缺失载体
图1。用SALSA MLPA Probemix P003 MLH1/MSH2(D1-0224)分析的Salsa Binning DNA DNA SD052-S01-1124(约50 ng)的毛细血管电泳模式(约50 ng)。指示在265 nt和317 nt的反转特异性探针的位置。探针峰高可能在不同的P003-D1探针之间有所不同。
IVSI-1、IVSI-5、IVSII-654和CD26,其中CD26、CD17、CD41/42变异是最常见的三种致病变异,且在各个地区的发生率不同。 3-5还有少部分β地中海贫血患者与HBB基因缺失变异有关。有多种分子生物学技术可用于检测 HBB 基因变体,例如 ARMS-PCR(扩增阻滞突变系统聚合酶链反应)、间隙 PCR、条带分析、基因测序、MLPA(多重连接依赖探针扩增)。每种 HBB 基因变体的流行程度往往在不同国家和地区存在差异,然而,移民已将变体在世界各国之间传播。识别常见致病变异的研究有助于实验室应用适当的技术来缩短诊断时间并节省成本。因此,该研究采用多重 ARMS-PCR(MARMS-PCR)检测 10 种常见变异,采用 Sanger 测序检测罕见变异,并采用 MLPA 识别导致缺失的变异。
图 1 . 使用 SALSA MLPA Probemix P140 HBA (C1-0322) 分析 SALSA Binning DNA SD031-S01-0924 (约 50 ng) 的毛细管电泳图。图中标出了 136 nt 处的 Hb Contant Spring 突变 (HBA2:c.427T>C, p.*143Glnext*31) 特异性探针的位置。不同批次的 P140-C1 探针混合物的探针峰高可能有所不同。
图2-诊断算法:在患者中对SMA的临床怀疑后,使用MLPA或QPCR对SMN1缺失进行诊断测试,以及同时对SMN2进行同时测试,可以迅速,准确地分类SMA并选择治疗。如果未检测到SMN1的副本,它确认了SMA的诊断。如果找到了一个SMN1的副本,则需要对SMN1基因进行进一步的测序,以确定检测到的副本是否包含突变。单个SMN1副本中的一个突变证实了SMA的诊断,而没有突变表示其他形式的SMA或NMD的可能性。在检测到两个或更多份SMN1的情况下,研究了患者的血缘家族病史。如果存在血父,则进行进一步的测序以评估潜在突变。相反,缺乏血缘关系表明其他SMA或NMD疾病的可能性。3.4.7。如果临床