演讲者 1:Simon Hanslmayr 教授,格拉斯哥大学心理学和神经科学学院教授,Braingrade GmbH 的科学顾问。标题:欢迎致辞摘要:我们关注的想法、感觉或面部表情都是由分布式大脑网络中协调的神经放电模式产生的。需要精确地安排这种神经活动的时间来表示大脑网络中的信息并形成持久的记忆。神经振荡建立了这种精确的时间,这就是我选择研究振荡以了解大脑如何实现认知的原因。为此,我的研究主要集中在健康人群的注意力和记忆过程,但我也对这些过程如何影响临床人群感兴趣,例如患有精神分裂症或创伤后应激障碍 (PTSD) 的患者。为了研究人类的神经振荡,我的实验室使用了广泛的电生理学和成像方法,从整体尺度(如 EEG/MEG、fMRI、EEG-fMRI 组合)到局部尺度(如人类颅内 EEG 和单个单元记录)。除了将振荡与认知关联起来之外,我们还通过有节奏的感官刺激(即闪烁或调幅声音)、有节奏的经颅磁刺激 (rTMS) 和经颅电刺激 (TES) 从外部扰动大脑来研究振荡的因果作用,并研究此类振荡扰动对认知的影响。最后,我们通过计算模型整合两种数据流(即相关和因果)的结果。这些模型会做出特定的预测,我们会在相关和因果实验中对其进行测试。我采用这种多学科、多模式和多尺度方法的目的是详细描绘人类大脑如何感知、存储和检索信息。
自 2022 年 6 月 30 日估计以来,矿产资源(含金属)的主要变化与所有地点的耗竭 1 有关,同时成本增加、金属价格假设增加、边界品位增加以及所有地点的模型更新。成本上涨是整个业务的主要驱动力。在 Las Bambas,成本增加导致矿产资源中去除了 1,475kt 铜金属。Ferrobamba 矿坑的钻探结果导致铜金属进一步减少约 380kt。金属价格假设的提高仅部分抵消了减少量。在 Dugald River,更新后的估计增加了约 280kt 铅金属。尽管成本压力上升,但 Rosebery 几乎已经以锌当量取代了磨矿耗竭,Z 和 U 透镜的钻探成功。采矿耗竭导致 Kinsevere 的钴金属减少了约 30%,而 Mwepu 资源的铜增加了 70%。
MMG 3320。高级生物信息学。3 学分。提供生物信息学工具和技术的高级培训。特别强调与序列分析、比较基因组学、结构生物学和计算生物学相关的程序。还将涵盖其他主题,例如数据集成、生物数据解释、R 和 UNIX 脚本、多组学和系统生物学。强调直接的实践经验。先决条件:MMG 3310。Catamount 核心:QR。
MMG领导3该计划3组织3的目标3教师4选举程序4年的选举程序4课程要求:秋季学期1 5 Jones in DERACH IN CONTON(JPE)5年级课程(JPE)5课程要求:春季学期1年1年1年课程1 5课程要求:秋季学期2年2年级2年2年级5年级助理培训和教学机会(TATT ASSIPPER培训和教学机会)6年级的秋季SPRING 6 sprime Sprime 6 spring otive Spring 7选举6年6月6日6年级选举6年6年级选举6年6月6日,选举6年6年6年6年6年级。 7 Seminars, Journals, and Research Clubs 8 Laboratory Rotations 8 Advisors 9 Choosing an Advisor 10 Forming Your Dissertation Committee 10 Qualifying Examination 11 Dissertation Research Proposal 13 Admission to Candidacy 13 Dissertation Committee Meetings 14 Navigating Graduate School 15 Dissertation and Final Defense 17 Master's Thesis 18 Review of Student Progress 18 Transferring Programs 19 Attendance at Scientific Meetings 20 Time Expectations for Graduate Students 20 Graduate Student Parental Accommodation Policy 20 Employment限制政策20学生支持服务21可访问服务21教师特定计划政策21上诉,申诉政策和荣誉法规21
Inclusion of TTH on Short Stay and Gynaecology Areas \Procedure – Signed off at MMG March 2017 Update of Medicines Reconciliation Procedure – Signed off at MMG August 2018 Update of Methotrexate Procedure – Signed off at September MMG Nurse Initiated Medicines Procedure – approved by MMG Dec 2018 Advice for provision of TTH out of hours.改进索引和页面编号链接,链接到UHB批准的Covert Medicines文档。UHB批准的药物错误动作表。 附录2UHB批准的药物错误动作表。附录2
摘要:通过将多个微电网 (MG) 互连并形成多微电网 (MMG) 系统,可以缓解单个微电网 (MG) 的若干问题,例如电压和频率波动,这些问题主要由于可再生能源 (RES) 发电的间歇性而引起。MMG 系统可提高电力系统的可靠性和弹性,提高 RES 的利用率,并为消费者提供具有成本效益的电力。本文全面回顾了 MMG 领域的研究,总结了文献中提出的不同运营目标和约束,以实现 MMG 的高效运行。此外,还讨论了可以将 MG 互连以形成 MMG 系统的不同 MMG 架构及其特性。本文还对集中式、分散式、分布式和分层结构中 MMG 的运行和控制的不同控制策略和运营管理方法进行了最新回顾。还介绍了 MMG 系统中不同不确定性来源的分类以及提出的不确定性处理策略。最后,本文补充讨论了MMG系统的主要开放问题和未来研究方向。
摘要:多微电网 (MMG) 通过提高智能电网的运营灵活性、稳定性和可靠性,为社会带来经济和环境效益。由于使用多种基础设施、通信协议、控制器和智能电子设备,MMG 比传统电网更复杂。MMG 的分布式和异构连接技术及其与外部来源交换信息的需求以及通信网络和基于软件的组件中的漏洞使 MMG 容易受到网络攻击。在本研究中,我们提出了一个协作自适应网络安全的概念框架,该框架能够主动检测安全事件。该框架利用联邦学习以分散的方式协作训练共享预测模型。本研究中使用的方法主要是分析性的。这涉及分析如何将协作自适应网络安全原则应用于 MMG 环境,从而开发理论模型,然后可以通过原型设计和实时模拟在实践中验证这些模型。
摘要互连的多微晶(MMG)的概念是一种有前途的解决方案,用于改善分销网络的操作,控制和经济性能。MMGS的能源管理是一项艰巨而又具有挑战性的任务,尤其是由于这些资源间歇性以及负载需求的随机性质而导致的可再生能源资源(RER)和负载变化的变化。在这方面,通过最佳包含由光伏(PV)和风力涡轮机(WT)的分布式发电(DGS)组成的混合系统,优化了MMGS的能源管理,并在产生的功率和负载变化的情况下进行了基于风力涡轮机(WT)的分布式生成(DGS)。提出了一种修改的卷cuchin搜索算法(MCAPSA),并应用于MMG的能量管理。MCAPSA基于增强标准胶囊搜索算法(CAPSA)的搜索能力,使用三种改进策略,包括基于准序列的学习(QOBL),基于运动的随机征费,征收征费分布以及Prairie Dog dog Optimization(PDO)中的Prairie Dogs的利用机制。优化的功能是一个多目标函数,包括成本和降低电压偏差以及稳定性增强。对标准基准函数和获得的结果验证了所提出的技术的有效性。然后,所提出的方法用于在不确定性锥形时进行IEEE 33-BUS和69个总线MMG的能源管理。同样,对于第二个MMG,VD的成本和总和减少了44.19%和39.70%,而VSI的增强率则增长了4.49%。结果表明,使用拟议技术包含WT和PV的能源管理可以将VD的成本和总和减少46.41%和62.54%,并且第一个MMG的VSI将增强15.1406%。
1972 年。 [1] Cohen 和 Gilver 将肌磁图信号定义为磁场矢量一个分量随时间变化的记录,其中测量点的磁场由骨骼肌产生的电流引起。MMG 方法与其电对应方法,即肌电图 (EMG) 技术之间的对应关系。 [2] 两者都直接源于麦克斯韦-安培定律,如图 1a 所示。然而,EMG 信号记录的简易性以及 MMG 与 EMG 信号的时间和频谱特性的相似性,促使学术界和临床界几乎只使用 EMG 方法。因此,MMG 方法的进展相当缓慢。生物磁信号通常很弱。它们很容易受到环境磁噪声的污染。因此,大多数生物磁传感研究都在磁屏蔽室中进行。在过去的四十年里,生物磁信号的宏观和非侵入性检测的保真度、时间和空间分辨率取得了显着进步。例子包括心磁图 (MCG) 和脑磁图 (MEG) 方法,与 MMG 研究相比,自 1970 年代以来出版物数量存在显著差异。我们将调查这种显著差异的原因,并探讨测量骨骼肌磁场的技术限制是否导致了如此明显的差异。MMG 方法发展的两个关键驱动因素:1) 在皮肤上非侵入性记录时 EMG 信号的空间分辨率较差,最先进的 EMG 测量甚至使用针记录探头,这可以准确评估肌肉活动,但会产生疼痛并且仅限于微小区域,空间采样点较差;2) 由于金属-组织界面,可植入 EMG 传感器的生物相容性较差。MMG 传感器有可能同时解决这两个缺点,因为:1) 磁场的大小随着原点和传感器之间的距离而显着减小,从而提高 MMG 的空间分辨率; 2)MMG 传感器不需要电接触即可记录,因此如果用生物相容性材料或聚合物完全封装,它们可以提高长期生物相容性。MMG 信号可以成为医疗诊断、康复、健康监测和机器人控制的重要指标(图 1b)。[3] 最近的技术进步为远程和连续记录和诊断铺平了道路
随着可再生能源高渗透率引起的净负荷的不确定性和变异性的增加,单个微电网(MG)的独立操作正面临着巨大的操作问题,例如高运营成本,局部可再生能源的自我消耗率低,而局部可再生能源的自我消费率低,并且加剧了峰值和山谷负载。在本文中,提出了一种用于互连多微晶(MMG)的移动能源存储系统(MYS)和基于功率交易的灵活性增强策略,考虑到不确定的可再生能源生成。混乱可以通过卡车在不同的微电网之间移动,我们使用这种时间 - 空间灵活性为MMG提供充电/放电服务。然后,由于确保在协作操作中的公平性和合理性,Aumann -Shapley是为了在MMG系统中分配了MMG系统的费用和电力交易,这是最重要的。之后,从风险规避的角度来看,未提供的预期功率(EPN)和预期功率削减(EPC)是评估不确定的可再生能源的风险措施。数值研究表明,MMG操作的混乱使柴油发电机的总运营成本减少了23.58%,风和太阳能的总网格连接量的改善增加了7.17%,总负载曲线的平滑度提高了0.92%。此外,用于MMG操作的互连系统可以使风和太阳能的总网格连接量增加6.69%,并且与未连接的系统相比,总负载曲线的平滑度提高了1.50%。