为了理解 MMO 在促进恢复力以及评估和治疗战斗和作战应激伤亡方面的作用,首先必须考虑人类应激反应背后的基本原理。人类应激反应系统的作用是在外部威胁和环境变化的情况下维持体内平衡。它通过在威胁面前引发“战斗、逃跑或冻结”等保护性行为来实现这一点。应激反应系统还促进快速回忆过去的威胁信息。在极端压力下,这些反应和回忆系统会产生与威胁不成比例的行为和症状。参与应激反应的主要大脑系统包括杏仁核、海马体和前额叶皮层。1 这些区域都处理感官信息,但处理方式和速度不同。杏仁核从丘脑接收直接感官输入并快速识别威胁。在威胁面前,杏仁核会产生适当的战斗、逃跑或冻结反应信号。海马体和前额叶皮层接收相同的感官信息,但这些大脑区域的通路速度较慢,旨在整合额外的记忆和背景信息。在健康、无压力的个体中,这些通路调节或抑制杏仁核反应。长期或极端的
B.Tech >>> 第 4 学期 第 6 学期 MMC 401:冶金过程中的传输现象 MMC 601:炼钢 MMC 402:相变和相平衡 MMC 602:材料的机械加工 MMC 403:材料特性 深度选修课 1:MME 610:工程材料 CSC 433 MME 616:凝固现象 开放选修课 1 MME 612:炼铁的替代路线 深度选修课 2:MME 617:金属连接工艺 MME 615:陶瓷技术 MME 613:铁合金的生产 第 8 学期 深度选修课 6:MME 813:炼铁和炼钢的原材料准备 MME 811:FEM 建模与仿真材料设计 MME 812:数学建模与仿真 OPEN ELECTIVE 4:MMO 841:材料科学 OPEN ELECTIVE 5 MMG - Madan Mohan Ghosh MKM — MKMondal BM - B. Maji KSG - KS Ghosh DM - D. Mandal SG - S. Ghorai SB - S. Bera BKS - BK Show AKM - AK Mandal JM - J. Maity MM - M. Mallik KPY - KPYagati SP - S. Pramanik
民用和军用飞机设计中都必须考虑俯冲速度稳定性。飞机越稳定,就要牺牲越多的性能。反之,性能更高的飞机天生就不太稳定。这就是为什么几乎所有设计巡航速度为 0.90 马赫、配备传统飞行控制装置的飞机都配备了大型垂直尾翼和水平稳定器。主要原因是需要满足国际适航认证机构规定的俯冲速度稳定性标准。但是如此大尾翼会带来阻力,从而牺牲燃料和航程。FEW 使达索能够为 7X 配备明显更小、阻力更低的尾翼,同时仍能满足监管的俯冲速度稳定性要求。例如,最大演示俯冲速度为 0.93 马赫,仅比 7X 的 0.90 马赫高出 0.03 马赫。如果没有 FEW,MMo 将被限制在 0.86 马赫,因为认证机构通常要求 0.07 马赫的缓冲。同样,当不受马赫限制时,最大演示俯冲速度为 405 节,仅比 Falcon 7X 的 370 节 VMO 速度高出 35 节。使用传统的灯光控制,Kerherve 估计 VDF 至少要达到 430 节才能验证相同的 VMO。简而言之,FEW 飞行控制提供的保护使飞机制造商能够提高最大巡航速度,同时与配备传统飞行控制的飞机相比,提供相同或更好的高速安全裕度。
现在,由于DNA采样过程是针对海面埋葬在Needles现场埋葬的所有许可的强制性要求,因此必须同意将三个DNA样本从死者中删除。所需的三个样品是深肌肉样本,血液样本和死者口内部取的颊拭子。选择三个单独的样本是为了确保即使在其中一个样品被污染或无法使用的情况下,死者也可以获得全DNA剖面。同意需要提供这三个样本,以便在MMO网站上提供的特定同意书上满足《 2004年人类组织法》(HT法案)的要求。如果有责任提供同意的个人无法或不愿意同意接受三种不同的样本类型,则无法进行DNA采样,因此不能将个人埋葬在针头埋葬地点。如果Mortuary工作人员无法在DNA采样预约中获取所需的样品之一,则可以诉诸于可以从中提取DNA的牙齿(请注意,从口腔的后部进行牙齿,以减少化妆品的损害)。他们只会在死者的临床状况意味着血液/深肌肉或口腔样本不可用或无法产生可用的DNA轮廓的独特情况下这样做。同意执行此操作,详细介绍了同意书,并在获得同意时需要自己讨论。如果您知道有任何临床原因可能会妨碍他们获得三个必需的DNA样品的能力,请在此DNA采样预约中注明。
作为达索公务机系列的旗舰产品,猎鹰 7X 是第一款使用电传数字飞行控制系统的公务机。凭借全新的高跨音速机翼,猎鹰 7X 的航程约为 6,000 海里,但燃油效率却与小型飞机相当 - 即使配备三个发动机。然而,它能够进入小型机场,这意味着它可以在跨越大洋或大陆之前进行几次短途飞行来接载乘客。猎鹰 7X 的翼展为 86 英尺(26.2 米),长度为 76 英尺(23.2 米),高度为 25 英尺(7.8 米),比许多其他公务机都要大。机舱长 39 英尺(12 米),宽 92 英寸(2.34 米),高 74 英寸(1.92 米),根据乘客喜好可提供最多 12 个座位。最大起飞重量为 69,000 磅,最大着陆重量为 62,400 磅,装备空重 33,200 磅。Vmo/Mmo 分别为 370kias/0.90M。性能猎鹰 7X 是一种超长距离飞机,最大航程为 5950 海里,基于满油、3 名机组人员、8 名乘客及行李、0.80 海里巡航和无风,采用 NBAA IFR 备份(一次进近复飞,5 分钟等待,200 海里备降,30 分钟等待在 5000 英尺)。这个航程可以从巴黎直飞东京、香港和美国西海岸;从迪拜直飞欧洲、亚洲、非洲和西澳大利亚;从洛杉矶直飞欧洲大部分地区和整个拉丁美洲。在相同性能条件下,平衡场起飞所需距离仅为5505英尺(1678米),着陆距离为
摘要:本文重点研究了针对具体哈希函数的专用量子碰撞攻击,目前此类攻击尚未引起太多关注。在经典环境下,查找 n 位哈希函数碰撞的一般复杂度为 O(2 n/ 2),因此基于差分密码分析的经典碰撞攻击(如反弹攻击)会以高于 2 − n/ 2 的概率构建差分轨迹。同理,通用量子算法(如 BHT 算法)会以复杂度 O(2 n/ 3) 找到碰撞。利用量子算法,可以以复杂度 p − 1 / 2 生成一对满足概率 p 的差分轨迹的消息。因此,在量子环境下,一些在经典环境下无法利用的概率高达 2 − 2 n/ 3 的差分轨迹可能会被利用来在量子环境下发起碰撞攻击。特别是,被攻击的轮数可能会增加。在本文中,我们攻击了两个国际哈希函数标准:AES-MMO 和 Whirlpool。对于 AES-MMO,我们提出了一个概率为 2-80 的 7 轮差分轨迹,并使用它来查找与反弹攻击的量子版本的碰撞,而在经典设置中只能攻击 6 轮。对于 Whirlpool,我们基于经典反弹区分器的 6 轮差分轨迹发起碰撞攻击,其复杂度高于生日界限。这将 5 轮的最佳经典攻击提高了 1。我们还表明,这些轨迹在我们的方法中是最佳的。我们的结果有两个重要含义。首先,似乎存在一个普遍的信念,即经典安全的哈希函数将保持对量子对手的安全性。事实上,NIST 后量子竞赛中的几个第二轮候选人使用现有的哈希函数(例如 SHA-3)作为量子安全函数。我们的结果推翻了这种普遍的看法。其次,我们的观察表明,差分线索搜索不应以概率 2 − n/ 2 停止,而应考虑最多 2 − 2 n/ 3 。因此,值得重新审视以前的差分线索搜索活动。