拓扑材料引起了极大的关注,因为它们在宽带和快速的光响应中,尤其是在红外状态下的潜力。然而,这些系统中的高载体浓度通常会导致光生载体快速重组,从而限制了光疗力。在这里,我们证明了MNBI 2 TE 4中的SB掺杂有效地降低了载体浓度并抑制电子孔重组,从而显着改善了可见的中型红外光谱的光电性能。最佳掺杂的MN(BI 0.82 SB 0.18)2 TE 4光电探测器在1550 nm时的响应时间为18.5μs,响应时间为0.795 mA W -1,响应时间为3.02 mA W -1,响应时间为4μm,响应时间为9.0μm。这些值与未居式MNBI 2 TE 4相比,这些值近两个数量级改善。我们的结果重点介绍了乐队工程作为增强基于拓扑材料的光电探测器的红外绩效的有效策略,为高敏性红外检测开辟了新的途径。关键词拓扑绝缘子,红外光电探测器,带工程,VDW材料,光伏效果简介
由于其出色的药物样和药代动力学特性,小分子药物被广泛用于治疗各种疾病,使其成为药物发现的批评组成部分。近年来,随着深度学习(DL)技术的快速发展,与传统的机器学习方法相比,基于DL的小分子药物脱离方法在预测准确性,速度和复杂的分子关系建模方面取得了出色的性能。这些进步提高了药物筛查效率和优化,它们为各种药物发现任务提供了更精确,更有效的解决方案。依靠该领域的发展,本文旨在系统地总结和推广基于DL的小分子药物发现的最新关键任务和代表性技术。具体来说,我们提供了小分子药物发现及其相互关系的主要任务的概述。接下来,我们分析了六个核心任务,总结了相关方法,常用数据集和技术开发趋势。最后,我们讨论了关键挑战,例如可解释性和分布范围内化,并提供了我们对DL辅助小分子药物发现的未来探索方向的见解。
通过AD原子沉积对量子物质的电子结构进行修改允许对电子和磁性的定向设计。在本研究中使用了此概念,以调整基于MNBI 2 TE 4的磁性拓扑绝缘子的表面电子结构。这些系统的拓扑带通常是强烈的电子掺杂的,并与表面状态的多种表面状态杂交,这些状态将显着拓扑状态置于电子传输和实际应用的范围。在这项研究中,微焦点角度分辨光发射光谱(微摩尔)可直接访问MNBI 2 TE 4和MNBI 4 TE 7的终止依赖性分散体。所得的带结构变化被发现是高度复杂的,涵盖了覆盖范围依赖性的双极掺杂效应,去除表面状态杂交以及表面状态带隙的塌陷。此外,发现掺杂带弯曲会产生可调的量子井状态。这种广泛的观察到的电子结构修饰可以提供新的方法来利用拓扑状态和富含锰二硫化锰的表面电子结构。
摘要:按层材料工程产生了有趣的量子现象,例如界面超导性和量子异常效应。但是,探测41个电子状态逐层仍然具有挑战性。这是42理解磁性拓扑绝缘子中拓扑电子状态的层起源的难度来体现的。43在这里,我们报告了磁性44拓扑绝缘子(MNBI 2 TE 4)(BI 2 TE 3)上的层编码频域光发射实验,该实验表征了其电子状态的起源。45红外激光激发启动连贯的晶格振动,其层索引由46个振动频率编码。然后,光发射光谱谱图跟踪电子动力学,其中47层信息在频域中携带。这种层频面的对应关系揭示了拓扑表面状态从顶部磁性层从顶部磁性层转移到埋入的49二层中的48波函数重新分配,从而核对了在50(MNBI 2 TE 4)中消失的破碎对称能量间隙(BI 2 TE 4)(BI 2 TE 3)及其相关化合物。可以将层频率对应关系51在一类宽类的范德华52个超级晶格中划分为逐层划分的电子状态。53
我们使用紫外线探针激光源介绍了时间和角度分辨光发射光谱的设计详细说明,该光发射光谱结合了β-BAB 2 O 4和KBE 2 BO 3 F 2光学晶体的非线性效应。可以在6.0和7.2 eV之间切换探针激光器的光子能,并具有在两种不同的分辨率配置下操作每个光子能量设置的灵活性。在完全优化的能源分辨率配置下,我们达到了6.0 eV时的8.5 MeV,在7.2 eV时达到10 meV。另外,切换到其他配置可以增强时间分辨率,从而产生6.0 eV的72 fs的时间分辨率,而为7.2 eV的时间分辨率为185 fs。我们通过将系统应用于测量两种典型材料来验证系统的性能和可靠性:拓扑绝缘子MNBI 2 TE 4和激子绝缘子候选者TA 2 NISE 5。
摘要:我们从理论上研究了低频光脉冲与拓扑和磁有序两七重层 (2-SL) MnBi 2 Te 4 (MBT) 和 MnSb 2 Te 4 (MST) 中的声子共振的影响。这些材料具有相同的对称性和原始形式的反铁磁基态,但表现出不同的磁交换相互作用。在这两种材料中,剪切和呼吸拉曼声子都可以通过与光激发红外声子的非线性相互作用来激发,使用可以在当前实验装置中获得的强激光脉冲。光诱导的瞬态晶格畸变导致有效层间交换相互作用和磁序的符号发生变化,并伴有拓扑能带跃迁。此外,我们表明,通常存在于 MBT 和 MST 样品中的中度反位无序可以促进这种影响。因此,我们的工作确立了 2-SL MBT 和 MST 作为实现非平衡磁拓扑相变的候选平台。