daf-16 编码一种广泛表达的转录因子,在多种发育和生理过程中发挥作用 (Lin et al., 1997; Ogg et al. , 1997; Tissenbaum, 2018),包括在神经系统中 (Kim and Webb, 2017)。DAF-16 蛋白表现出高度动态的细胞质到核易位,过去曾使用多拷贝构建体进行可视化,这可能会产生潜在的过表达伪影(例如 (Henderson and Johnson, 2001) 中描述的那些)。为了避免这种过表达效应,生成荧光标记的 daf-16 等位基因将很有用。同样,生成 daf-16 的条件等位基因将有助于解决有关 daf-16 作用重点的许多悬而未决的问题。为了解决这两个问题,我们最近生成了一个带有 mNeonGreen 标记的 daf-16 等位基因,该等位基因还包含一个生长素诱导的降解子 (Bhattacharya 等人,2019;Zhang 等人,2015)。该等位基因 daf-16(ot853[daf- 16::mNG::AID]) 使我们能够为神经元类型特异性 daf-16 耗竭提供概念验证 (Bhattacharya 等人,2019)。该等位基因的一个问题是,由于其荧光标记 (mNeonGreen) 的发射光谱,它不能与基于 gfp 的表型读数结合使用。
对从榴莲 ( Durio zibethinus L.) 果壳中提取的多糖凝胶 (PG) 进行了体外活性研究,以评估其抗微生物活性。采用简单的琼脂扩散和肉汤稀释法,通过微生物测定技术测定了 PG 对两种细菌菌株金黄色葡萄球菌和大肠杆菌以及两种酵母菌株白色念珠菌和酿酒酵母的抑制活性。在蒸馏水中浓度为 0.32% 的 PG 在 TSA 培养基上对金黄色葡萄球菌显示出抑制区,在 TSB 培养基中对金黄色葡萄球菌的 MIC 为 0.64 mg/ml。然而,在蒸馏水中1.25%和2.50%的最低PG浓度在MNG琼脂培养基上分别对金黄色葡萄球菌和大肠杆菌产生了抑制活性,并且获得了具有清晰边界的抑制区。在蛋白胨肉汤培养基中,1%的最低浓度的PG对大肠杆菌和金黄色葡萄球菌产生了抑制活性:24小时时菌落数分别降至零和15%。然而,在0.1% PG存在下,NSS中的两种测试细菌菌株均受到抑制:24小时时菌落数降至零。PG对本研究中的两种测试酵母菌株不显示抑制活性。
HKG JPNKOR CAN FIN MAC SWE IRL NLD GBREST NZL SVN NOR AUS PRT FRA BELCHE CYP DNK POL CZEDEUAUT ISL ISR ESP ITA HRV MLT LVA LTU USA BLR GRC VNMLUX HUN RUS SRB ARE SVK CHN BHR CHL TUR QAT ALB MNE SYCUKR CRI KAZ BRN UZB MUS MNG BGR MEX MYS THA OMN PER COL TTO LCA ARG URY LKA KGZ ATG ECU IRN PLW KNA ROU MDA PSE BIH ARM AZE SAU GEO GRD KWT MKD JOR BRA WSM KEN SLV DMA IDN JAM DZA VCT TON PRY TUN PHL LBN FJI NRU NIC FSM NPL TJK MAR DOM PAN GUY EGY印度 KIR KHM HND MMR BTN ZWE BGD GTM GAB 老挝 VUT TLS GHA TUV HTI 南 TGO PNG ZAF MHL GMB SEN SLB COG BWA MWI IRQ PAK COM LSO BEN AFG CMR ZMB MDG TZA BDI UGA BFA ETH MRT CIVRWASDN YEM SWZ GIN COD SLE AGO MOZ NGA
摘要:下一代测序(NGS)已改革了传染病管理,包括Covid-19。虽然实时聚合酶链反应(PCR)广泛用于病原体检测,但需要预定义的靶标。ngs提供了一种公正的方法,在没有先验知识的情况下同时检测多个病原体。尽管具有潜力,但NGS在临床环境中的实施仍面临高成本和技术复杂性等挑战。ngs平台,例如Illumina,Ion Torrent和Nanopore提供高通量测序,识别病原体和电阻标记。应用包括整个基因组测序(WGS),元基因组NGS(MNG)和靶向NGS(TNGS)。将NG与常规方法整合在一起可以改善诊断方法,但目前的证据是支持其广泛的临床用途。关键词:下一代测序(NGS),传染病管理,病原体检测,宏基因组测序,整个基因组测序(WGS),实验室诊断,分子诊断技术。版权所有©2024作者:这是根据Creative Commons Attribution 4.0国际许可(CC BY-NC 4.0)分发的开放访问文章,允许在任何非商业用途的媒介中使用,不受限制地使用,分发和再现,以提供原始作者和源头。i ntroduction
粘膜菌病是由粘膜真菌引起的一种威胁生命的机会感染。它主要影响控制糖尿病或免疫抑制不良的人(1-4)。真菌孢子可以通过吸入进入呼吸道,通过伤口部位的直接接种到达皮肤,或通过胃肠道通过摄入摄入体内进入身体。一旦进入宿主,孢子就会发芽到菌丝中,菌丝会侵入血管,从而导致组织梗塞和坏死,并可以肿瘤传播以涉及多个器官(4、5)。犀牛 - 棘突型胶质细胞增多症(ROCM)和肺胶质细胞增多症(PM)是最常见的临床表现,PM的死亡率范围为40%至80%(3、6-8)。在新诊断的糖尿病患者中的PM报告很少见,并且迅速发展以使气管和纵隔的病例甚至更稀有(3)。在本案报告中,我们提出了一名19岁的以前健康的女性患者,患有新诊断的糖尿病,该患者发育于根瘤菌Delemar引起的PM。我们通过MNG实现了PM的早期诊断。在两周内,广泛的肺部梗塞,严重的气道塌陷,上纵隔感染以及最终由于多个肺血管出血引起的大规模血体,导致死亡。
Results: In 153 plasma samples, mNGS yielded a higher positivity rate than CMT (total: 88.24% vs. 40.52%, P<0.001; bacteria: 35.95% vs. 21.57%, P < 0.01; virus: 69.93% vs. 21.57%, P<0.001; fungi: 20.26% vs. 7.84%, p <0.01)。中性粒细胞减少症组细菌和真菌的阳性率高于非中性粒细胞减少组(细菌:48.61%vs. 24.69%,p <0.01; Fungi:27.78%vs. 13.58%,p <0.05)。MNG在造血干细胞移植(HSCT)的患者组中显示出更大的优势。HSCT组的3天和7天的效率均高于非HSCT组的3天和7天(3天:82.22%:82.22%,58.65%,p <0.01; 7天:88.89%:88.89%vs. 67.31%,67.31%,P <0.01),而HS中的HS在HS中均低于HS的6%。 38.89%,p <0.000)。The neutropenia group achieved similar ef fi cacy and mortality rates to the non-neutropenia group (7-day ef fi ciency rate: 76.39% vs. 71.43%, P > 0.05; mortality rate: 29.17% vs. 29.63%, P > 0.05) with more aggressive antibiotic adjustments (45.83% vs. 22.22%, P < 0.01)。
摘要:随着血流感染(BSI)代表了全球死亡率和发病率的主要原因,血液培养物在诊断中起着至关重要的作用,但是它们的临床应用会因长时间的转弯时间而抑制,并且仅检测到可培养的病原体。在这项研究中,我们直接从阳性血液培养液体中直接开发了shot弹枪元基因组学测序(MNG)测试,从而可以更快地鉴定出挑剔或缓慢生长的微生物。该测试是基于先前验证的下一代测序测试而构建的,该测试依赖于细菌和真菌识别的几个关键标记基因。新测试利用开源宏基因组学CZ-ID平台进行初始分析来生成最可能的候选物种,然后将其用作下游,确定分析的参考基因组。这种方法具有创新性,因为它利用了开源软件的不可知分类呼叫能力,同时仍依靠更具成熟和先前验证的基于标记基因的识别方案,从而增加了最终结果中的态度。对细菌和真菌微生物的测试表现出很高的精度(100%,30/30)。我们进一步证明了其临床实用性,尤其是针对厌氧和分枝杆菌的临床实用性,它们要么是挑剔,生长缓慢或不寻常的。尽管仅适用于有限的设置,但血液培养的阳性MNGS测试在解决诊断有挑战性BSI的临床需求方面提供了逐步改善。
摘要:在这篇评论文章中,人们强调,采用先进的分子诊断对于现代UTI管理至关重要,与传统方法相比,采用更全面,准确和快速的方法。标准尿培养的局限性包括低灵敏度和无法培养某些微生物的培养,导致未诊断的病例和发病率增加。晚期分子技术,例如多重PCR和合并的抗生素敏感性测试,已显示可大大减少经验治疗和负面结果。和晚期分子方法(如宏基因组学(MNG))提供了全面的病原体检测,而无需先前了解目标生物,从而提高了诊断产量。这些方法还检测到抗生素耐药性基因,有助于精确的治疗策略并改善患者预后。采用先进的分子诊断对现代UTI管理至关重要,与传统方法相比,提供了更全面,准确和快速的方法。这些技术对于改善患者护理和对抗抗生素耐药感染至关重要。关键字:尿路感染(UTI),多数菌感染,抗生素耐药性,尿液微生物组,宏基因组学,精密医学,慢性UTI。版权所有©2024作者:这是根据Creative Commons Attribution 4.0国际许可(CC BY-NC 4.0)分发的开放访问文章,允许在任何非商业用途的媒介中使用,不受限制地使用,分发和再现,以提供原始作者和源头。i ntroduction
2021 年 10 月 6 日,辉瑞向 FDA 提交了修改其紧急使用授权 (EUA) 的请求,以扩大辉瑞-BioNTech COVID-19 疫苗 (BNT162b2) 的使用范围,用于预防 5 至 11 岁(以下简称 5-11 岁)人群中由 SARS-CoV-2 引起的 COVID-19。建议的给药方案是 2 剂初级系列,每剂 10 µg mRNA,间隔 3 周给药。该 EUA 请求最初包括 1,518 名 BNT162b2 接受者和 750 名 5-11 岁安慰剂(生理盐水)接受者的安全性数据,他们参与了正在进行的随机、双盲、安慰剂对照临床试验 C4591007 的 2/3 期部分(队列 1)。在第 1 组参与者中,截至 2021 年 9 月 6 日该组数据截止时,95.1% 的参与者在第 2 剂后进行了 ≥2 个月的安全随访。FDA 在审查 EUA 修订请求期间提供了另外 1,591 名 BNT162b2 接受者和 788 名参加第 2/3 期试验(第 2 组)的安慰剂接受者的安全性数据,以便对严重不良事件和其他感兴趣的不良事件(例如心肌炎、心包炎、过敏反应)进行更有力的评估。截至 2021 年 10 月 8 日该组数据截止时,第 2 组随访的中位持续时间为第 2 剂后 2.4 周。疫苗有效性是通过免疫桥接 SARS-CoV-2 50% 中和抗体滴度 (NT50,SARS-CoV-2 mNG 微量中和试验) 推断的。将 5-11 岁儿童接种第 2 剂后 1 个月的中和抗体滴度与从功效研究 C4591001 中随机选择的 16-25 岁研究参与者子集接种第 2 剂后 1 个月的中和抗体滴度进行比较,这些参与者之前曾接种过两剂 30 μg BNT162b2。在 FDA 审查 EUA 修订请求期间,还提供了第 1 组参与者(在累计 19 例确诊 COVID-19 病例后)疫苗有效性 (VE) 的补充描述性分析。
Corona病毒疾病2019(Covid-19)或严重的急性呼吸综合征Coron-Avirus 2(SARS-COV-2)是由2019年12月在中国武汉[1,2]开始的新型冠状病毒引起的,并在全世界迅速传播。世界卫生组织(WHO)在2020年3月宣布Covid-19是全球大流行,这导致了持久的封锁,经济危机,并在2022年12月12日之前在全球造成了大约6,656,601人死亡[2-4]。该疾病的常见症状是发烧,头痛,干性咳嗽,喉咙痛和打喷嚏,它们在Covid-19's的孵育周期后出现2-14天(中位数为4天),并且随时间变化了[3]。过去两年的密集研究文献显示了原因,传播路线,病毒变体,细胞病毒相互作用途径及其对人体的影响。由于SARS-COV-2是一种致病性病毒,因此肺是暴露于该病毒的主要器官,如果不紧急治疗,则会受到损害。最近的研究中强调了病毒 - 人类细胞相互作用的几种途径。但是,该病毒如何与肺中存在的微生物相互作用的机制仍在研究中。人类肺部和气道具有多种微生物组成,可以在严重的呼吸道感染(例如COVID-19)中改变。现代宏基因组和下一代测序(MNG)技术有助于识别健康和疾病中的肺微生物组多样性。与肠道微生物组不同,肺微生物组通过两个器官之间的空气和粘液交换的连续运动与口服微生物组的双向连接更加动态和短暂。最近进行了八名COVID-19患者的支气管肺泡灌洗液(BALF)中存在的细菌类型的