因此,所使用的128个EEG频道是:FP1,FPZ,FP2,AFP1,AFPZ,AFP2,AFP2,AF7,AF3,AF3,AF4,AF4,AF4,AF8,AF5H,AFF1H,AFF1H,AFF2H,AFF2H,AFF6H,F7,F7,F7,F7,F5,F5,F3,F3,F3,F1 FFC3H,FFC1H,FFC2H,FFC4H,FFC6H,FFT8H,FFT10H,FT9,FT9,FT7,FC5,FC3,FC3,FC1,FCZ,FC2,FC2,FC4,FC4,FC6,FC6,FC6,FC6,FT8,FT10,FT10,FT10,FT10,FTT9H,FTT9H,FCC2 FCC4h, FCC6h, FTT8h, FTT10h, T7, C5, C3, C1, Cz, C2, C4, C6, T8, TTP7h, CCP5h, CCP3h, CCP1h, CCP2h, CCP4h, CCP6h, TTP8h, TP9, TP7, CP5, CP3, Cpz, CP4, CP6, TP8, TP10, TPP9h, TPP7h, CPP5h, CPP3h, CPP1h, CPP2h, CPP4h, CPP6h, TPP8h, TPP10h, P9, P7, P5, P3, P1, Pz, P2, P4, P6, P8, P10, PPO9h, PPO5h, PPO1h, PPO2H,PPO6H,PPO10H,PO9,PO7,PO3,POZ,PO4,PO4,PO8,PO8,PO10,Poo9H,Poo1,Poo1,Poo2,Poo10H,Poo10H,O1,O2,O2,O2,OI1H,OI1H,OI1H,OI2H,OI2H,I1,IZ和I2和I2。
本文利用 MNIST 数据集提出了经典和连续变量 (CV) 量子神经网络混合多分类器。当前可用的分类器最多只能分类两类。所提出的架构允许网络对最多 nm 个类进行分类,其中 n 表示截止维数,m 表示光子量子计算机上的量子模式数。CV 模型中截止维数和概率测量方法的结合使量子电路能够产生大小为 nm 的输出向量。然后将它们解释为独热编码标签,并用 nm −10 个零填充。基于“连续变量量子神经网络” [1] 中提出的二元分类器架构,在光子量子计算模拟器上使用 2、3、...、6 和 8 量子模式构建了总共七个不同的分类器。它们由经典前馈神经网络、量子数据编码电路和 CV 量子神经网络电路组成。在包含 600 个样本的截断 MNIST 数据集上,4 曲模式混合分类器实现了 100% 的训练准确率。