近年来,量子机器学习在理论和实践方面取得了长足的发展,已成为量子计算机在现实世界中应用的有希望的领域。为了实现这一目标,我们结合了最先进的算法和量子硬件,为量子机器学习应用提供了实验演示,并可证明其性能和效率。具体来说,我们设计了一个量子最近质心分类器,使用将经典数据高效加载到量子态并执行距离估计的技术,并在 11 量子比特离子阱量子机上进行了实验演示,其准确度与经典最近质心分类器的准确度相当,可用于 MNIST 手写数字数据集,并可实现 8 维合成数据的准确度高达 100%。
总而言之,这项研究介绍了一种专门设计的生成对抗网络(GAN),该网络专门为使用Kannada MNIST数据集综合现实手写数字而设计。涉及生成器和歧视器的GAN的对抗训练过程会产生真实的数字。利用密集连接的层和卷积神经网络的结构证明了将随机噪声转换为有意义的数字表示方面的功效。本文强调了GAN在数据增强和机器学习任务的合成数据生成中的潜在应用。在确认提出的基础,通过高参数调整,建筑修改和扩展培训时间的进一步优化时,建议提高数字生成能力。强调采用适当评估指标的重要性,将这项研究定位为该领域未来进步的垫脚石。
摘要——我们通过实验证明了蓝宝石衬底上工作温度高达 400 ◦ C 的坚固的 β-氧化镓 (β-Ga 2 O 3) 铁电 (FE) 场效应晶体管 (FeFET)。原子层沉积 (ALD) Hf 0.5 Zr 0.5 O 2 [氧化铪锆 (HZO)] 用作 FE 电介质。研究了 HZO/β-Ga 2 O 3 FeFET 在高温下的突触行为应用。这些器件表现出可区分的极化切换操作,输出电导由 FE 门上的输入脉冲数准线性控制。在模拟中,使用带有简单的两层多层感知器 (MLP) 网络的修改后的国家标准与技术研究所 (MNIST) 数据集,片上学习准确率在高温下达到 94%。这些超宽带隙半
摘要 — 量子机器学习仍然是量子计算领域中一个非常活跃的领域。其中许多方法已经将经典方法应用于量子设置,例如 QuantumFlow 等。我们推动这一趋势,并展示了经典卷积神经网络对量子系统的适应性——即 QuCNN。QuCNN 是一个基于参数化的多量子态的神经网络层,计算每个量子滤波状态和每个量子数据状态之间的相似性。使用 QuCNN,可以通过单辅助量子比特量子例程实现反向传播。通过在一小部分 MNIST 图像上应用具有数据状态和滤波状态的卷积层、比较反向传播的梯度并针对理想目标状态训练滤波状态来验证 QuCNN。索引术语 — 量子计算、量子机器学习、卷积神经网络
Quantum机器学习近年来已经看到了相当大的理论和实际发展,并已成为为量子计算机应用现实世界应用的有希望的领域。为了实现这一目标,我们在这里结合了最先进的算法和量子硬件,以提供量子机学习应用程序的实验证明,并提供可证明其性能和效率的保证。In particular, we design a quantum Nearest Centroid classifier, using techniques for efficiently loading classical data into quantum states and performing distance estimations, and experimentally demonstrate it on a 11-qubit trapped-ion quantum machine, match- ing the accuracy of classical nearest centroid classifiers for the MNIST handwritten digits dataset and achieving up to 100% accuracy for 8-dimensional合成数据。
自主获取输入的层次表示。该研究开发了分类算法,用于识别数字字符(0-9)中的手写数字,分析分类器组合方法并确定其准确性。该研究旨在优化同时处理多个脚本时的识别结果。它提出了一种简单的分析技术、线性判别分析 (LDA) 实现和用于数字字符分类的 NN 结构。然而,测试显示 LDA 分类器的结果不一致。该方法将基于配置文件的特征提取 (FE) 与高级分类算法相结合,可以显著改善 HWR 数字字符领域,这从它产生的不同结果可以看出。该模型在 MNIST 数据集上的表现为 98.98%。在 CPAR 数据库中,我们完成了跨数据集评估,准确率为 98.19%。关键词:手写识别;深度学习;神经网络;特征提取;线性判别分析;准确性
在大型图像中自动查找多个病变是医学图像分析中的常见问题。如果在优化过程中,自动化方法无法访问有关病变位置的信息,也没有给出病变的单个示例,那么解决这个问题可能会很困难。我们提出了一种使用神经网络的新型弱监督检测方法,该方法计算出显示脑病变位置的注意力图。这些注意力图是使用仅使用全局图像级标签优化的分割网络的最后特征图计算出来的。所提出的方法可以在全输入分辨率下生成注意力图,而无需在预处理期间进行插值,这使得小病变可以出现在注意力图中。为了进行比较,我们修改了最先进的方法来计算弱监督物体检测的注意力图,方法是使用全局回归目标而不是更传统的分类目标。这个回归目标优化了目标物体在图像中出现的次数,例如扫描中的脑病变数量或图像中的数字数量。我们研究了所提出方法在基于 MNIST 的检测数据集中的行为,并评估了该方法在扩大的血管周围间隙(一种脑损伤)的具有挑战性的检测中的表现,该检测是在 2202 个 3D 扫描的数据集中进行的,这些扫描在四个大脑区域的所有损伤中心都有逐点注释。在基于 MNIST 的数据集中,所提出的方法优于其他方法。在大脑数据集中,弱监督检测方法在每个区域中都接近人类的评分者内一致性。所提出的方法在四个区域中的两个区域中达到了最佳曲线下面积,并且在所有区域中的假阳性检测数量最低,而其在所有区域的平均灵敏度与其他最佳方法相似。所提出的方法可以促进扩大的血管周围间隙的流行病学和临床研究,并有助于推动扩大的血管周围间隙的病因及其与脑血管疾病的关系的研究。
许多研究表明,情节记忆是一种生成性,但是大多数计算模型都采用存储视图。在这一文献中,我们提出了一个情节记忆的生成方面的模型。是基于中心假设,即海马商店和回复发作的方面作为记忆痕迹,这是不完整的。在召回中,新皮层在我们称为半完整的过程中根据一般语义信息合理地填充了缺失的零件。该模型结合了从机器学习,矢量定量的变异自动编码器(VQ-VAE)和像素卷积神经网络(PixelCNN)中知道的两个神经网络体系结构。作为情节,我们使用代表上下文的不同背景的数字和时尚项目(MNIST)的图像。该模型能够以语义上合理的方式完成内存跟踪的丢失部分,直到可以从头开始生成合理的图像,并且可以很好地概括为未经训练的图像。压缩也
并非所有神经网络架构都是一样的,有些架构在某些任务上的表现比其他架构好得多。但是,与神经网络架构相比,权重参数有多重要?在这项工作中,我们想知道,在没有学习任何权重参数的情况下,神经网络架构本身能在多大程度上为给定任务编码解决方案。我们提出了一种搜索方法,用于搜索无需任何明确权重训练就能执行任务的神经网络架构。为了评估这些网络,我们用从均匀随机分布中采样的单个共享权重参数填充连接,并测量预期性能。我们证明,我们的方法可以找到无需权重训练就能执行多项强化学习任务的最小神经网络架构。在监督学习领域,我们发现使用随机权重在 MNIST 上实现远高于偶然准确率的网络架构。本文的交互式版本位于 https://weightagnostic.github.io/
视觉神经解码,即从大脑活动模式中解释外部视觉刺激的能力,是神经科学研究中的一项具有挑战性的任务。最近的研究集中于表征可以用群体级特征描述的多个神经元的活动模式。在本研究中,我们结合空间、光谱和时间特征来实现神经流形分类,该分类能够表征视觉感知并模拟人脑中的工作记忆活动。我们通过基于黎曼流形和二维 EEG 频谱图表示的自定义深度学习架构分别处理时空和光谱信息。此外,在查看 11 类(即全黑加 0-9 数字图像)MindBigData Visual MNIST 数据集时,使用基于 CNN 的分类模型对视觉刺激引起的 EEG 信号进行分类。在刺激引起的 EEG 信号分类任务上评估了所提出的集成策略的有效性,总体准确率达到 86%,与最先进的基准相当。