别是石墨烯的 D 、 G 和 D+G( 也称 G') 峰 [ 19 ] ,这表 明两种样品都生成了高质量的石墨烯。其中 D 峰 是由于芳香环中 sp 2 碳网络扭曲使得碳原子发生 对称伸缩振动引起的 [ 20 ] ,用于衡量材料结构的无 序度,它的出现表明石墨烯的边缘较多或者含有 缺陷,这与 SEM 观察到的结果一致; G 峰是由 sp 2 碳原子间的拉伸振动引起的 [ 21 ] ; G' 峰也被称 为 2 D 峰,是双声子共振二阶拉曼峰,其强度与 石墨烯层数相关 [ 22 - 24 ] 。与 LIG 拉曼曲线相比, MnO 2 / LIG 在 472.6 cm −1 波段较强的峰值,对应于 Mn − O 的伸缩振动峰,证实了 MnO 2 的晶体结构。 XRD 测试结果表明, MnO 2 /LIG 在 2 θ =18.002° 、 28.268° 、 37.545° 、 49.954° 和 60.244° 处的特征峰分别对应 α - MnO 2 的 (200) 、 (310) 、 (211) 、 (411) 和 (521) 晶面 ( 图 4 b PDF#440141) , α -MnO 2 为隧道结构,可容 纳溶液中的阳离子 ( 如 Zn 2+ 、 Li + 、 Mg 2+ 、 Na + ) [ 21 ] 。 25.9° 和 44.8° 处的峰为 LIG 中 C 的特征衍射峰。
在强迫放电和细胞逆转的情况下,所有细胞都是绝对安全的。在滥用条件下,例如由于短路引起的极端加热,一个集成的安全通风口打开。li-mno 2 - 系统具有不释放任何有毒或侵略性物质的优势,因此对人类和环境没有危险。使用限制在短路的情况下限制输出电流的li-mno 2高速率电池的安全性提高。
水性锌离子电池(ZIBS)已发展为具有高安全性,高能量密度和环境友好性的固有性质的促进能量电池系统。1 - 3众所周知,金属Zn阳极具有低氧化还原电位的优势(-0.76 V与标准氢电极(SHE)),高理论能力(820 MA H G -1和5855 MA H CM -3),高兼容性/稳定性/稳定性和富含天然储备。4,5此外,与有机电解质相比,温和的电解质是不可美元的,电导率较高,成本较低。6 - 8尽管ZIB被认为是利用锌金属资源的最有效的方法之一,并且可以以低成本的价格满足对高性能储能设备的不断增长的需求,但缺乏适当的Excelent offelent proctode材料来存储ZN离子的储存量严重限制了ZIBS的进一步发展。9,10
酸性Mn的基于MN的天主分解室会导致MNO 2固体的积累,钝化阴极并形成“ Dead Mn”(图1(b)-2)由于产物被电解质流冲洗,从而降低了排放电压,容量和循环稳定性,并限制了Zn-MN FBS的能量密度。已经进行了许多效果,以改善锰转化反应的可逆性,以提高稳定性,同时使能力或电压构成。通过利用与Mn 2+的阴离子的配位作用,例如,乙酸,乙二胺乙酸乙酸(EDTA),可以通过抑制Mn 3+中间体的分离并避免“死亡MN”的前提来修改可逆性。10,17,18乙酸酯的电解质已显示出流量电池的循环稳定性显着提高。9,11尽管如此,轻度电解质中的质子活性降低,配位结构的改变会降低放电电压(O 1.6 V与Zn/Zn 2+)。此外,乙酸电解质中锌阳极的兼容性受损会导致稳定性有限,尤其是在高面积下。19,20一种替代的天然方法涉及采用脱钩的电解质,使用酸性和碱性的电解质分别作为天主分析器和厌氧分子来实现。21–23电压大大增加,这是由于基于碱性的电体中Zn反应的负潜力更大(1.199 V与SHE)。5,24,25,但是,脱钩的系统需要合并阳离子 - 交换膜(CEM),
记录的版本:此预印本的一个版本于2024年4月20日在离子学上发布。请参阅https://doi.org/10.1007/s11581-024-05537-x。
使用合作方法合成二氧化锰(MNO2)纳米颗粒,其结构,光学和电化学性质被系统地表征。透射电子显微镜(TEM)表明,MNO2纳米颗粒表现出明确的形态,尺寸分布均匀。X射线衍射(XRD)分析证实了材料和拉曼光谱的晶体性质进一步支持MNO2相的鉴定。傅立叶转换红外(FTIR)光谱证明了特征官能团的存在,而紫外线可见(UV-VIS)光谱估计的光条间隙为2.9 eV。热重分析(TGA)强调了MNO2的热稳定性,观察到最小的体重减轻高达800ºC。使用环状伏安法(CV)和电化学阻抗光谱(EIS)评估电化学性能,以10 mV/s的扫描速率揭示了236.04 f/g的高特异性电容。这些结果表明,MNO2纳米颗粒具有出色的电化学性能,使其成为能源储能应用的有前途的候选人。关键字:锰二氧化碳,共同沉积法,电化学性能,储能应用。
[(DNA)2 - AG 16 Cl 2] Q(q = 10)(图1)。10我们的先前理论工作提供了氯化物配体的证据,并首先了解了聚类的电子结构和光吸收10的特征,以及有关如何在DFT计算中处理这些系统在溶剂溶液中如何处理这些系统的基准,相对于溶剂效应,交换量的水平,交换相互作用的水平以及溶液中的内在电荷。11,我们在参考文献中发现。11,簇电荷对最高占用和最低的未占用分子轨道(HOMO-LUMO GAP)以及计算的UV-VIS吸收光谱之间的能量差距明显影响,然后可以直接与早期发布的实验数据进行比较。一个明确的结论是,电荷Q = 10 E给出了与实验数据和电子基态最大的Homo -Lumo间隙的绝对最佳匹配,反映了
这项工作致力于证明在非努力理论中应用自然语言处理理论中获得的信息处理公式的可能性。这些公式是在计算机实验中获得的,用于通过更改触发此运动的信息量来建模材料对象的运动和相互作用。定义了实验研究的假设,客观和任务。开发了用于执行典范的方法和软件工具。为了比较语音生产过程中人大脑过程中的过程的不同结果,采用了一系列方法来计算自然语言文本片段序列的估计,包括基于线性近似的方法。实验证实,在非力量相互作用理论中获得的信息处理公式反映了语言形成的过程。证明,提供的方法可以成功地用于创建反应性人工智能机系统。实验性并在这项工作中提出的实际结果构成了非强制性(信息)交互公式通常是有效的。
8. “天然纤维增强环氧复合材料的机械性能:综述”,ScienceDirect,Procedia Computer Science,2019 年 1 月,(Elsevier) 9. “通过灰色关联分析的田口法优化 Al2O3/Cu 复合材料的粉末冶金工艺参数”。沙特国王大学杂志,2019 年 2 月,(Elsevier)。 10. “MWCNTs/MnO2 纳米复合材料的侵蚀磨损分析”,Materials Today:Proceeding,2018 年 12 月,(Elsevier)。 11.“Cu/Al 2 O 3 复合材料在电火花加工电极中的硬度和磨损分析”,材料科学与工程,2018 年 2 月,IOP Science,(SCOPUS) 12. LM 25 合金和 LM 25 花岗岩复合材料在不同滑动速度和施加压力下的摩擦系数比较分析,IJMPERD,2018 年 6 月,(SCOPUS)
Zēlos 开发了一种独特的专利电池结构,可以稳定传统的一次性碱性 (Zn-Mn02) 电极,从而实现广泛的可充电功能。Zēlos 在 1 小时充电、1 小时放电的条件下进行了超过 1,400 次的深度循环,这是一个要求极高的测试方案。Zēlos 正在开发一种家用 LDES 解决方案,该解决方案有可能在成本、安全性和环境性能方面树立新的标准。Zēlos 的锌-二氧化锰电池具有实现高循环率和深度放电水平的潜力,使其适用于广泛的应用,特别是在安全性和成本至关重要的领域。Zēlos 电池采用水基、不易燃的电解质和无毒的地球丰富电极材料(如锌 (Zn) 和二氧化锰 (MnO2))制造。所有材料都具有高能量密度和低成本。
