招募合同员工乌干达政府(GOU)自1990年代初以来一直在追求公共财务管理(PFM)系统的战略改革,旨在支持政府通过实现良好治理,可持续增长目标,稳定的宏观经济环境而在国家发展的宏观发展环境中支持政府消除贫困的目标。通过财政部,规划和经济发展部,政府正在实施资源增强和问责制计划(REAP),作为实施公共财务管理(PFM)改革策略(2018-2025)的主要框架。收获的总体目标是增强资源动员,改善计划和公共投资管理,并加强对质量,高效和有效服务提供的责任。
empagliflozin和盐酸二甲双胍释放片剂被指示为饮食和运动的辅助手段,以改善2型糖尿病成年人的血糖控制,当时用雌激素和二甲双胍盐酸盐治疗时,适用于2型糖尿病。empagliflozin被指出可降低2型糖尿病和既定心血管疾病的成人心血管死亡的风险(请参阅第5.1节)。然而,尚未确定雌性二释放片的雌激素和盐酸二甲双胍对降低2型糖尿病和心血管疾病成人心血管死亡风险的有效性。不建议使用1型糖尿病患者或治疗糖尿病性酮症酸中毒的患者使用empagliflozin和盐酸二甲双胍扩展释放片的限制(请参阅第4.4节)。4.2。posology and Administion方法:建议剂量•对于先前未用empagliflozin治疗的体积耗竭的患者,在启动empagliflozin和盐酸二甲双胍扩展释放片之前,请更正这种情况(请参阅第4.4节)。•基于患者的当前方案的empagliflozin和二甲双胍盐酸盐的起始剂量个性化:
关于FDP:有关人工智能(AI)的教师发展计划(FDP),用于计算机视觉,医学成像应用将帮助教育者和研究人员了解AI基础知识及其如何应用于具有多个安全应用的医学成像技术。参与者将探索机器学习和深度学习概念,专注于使用AI进行医学成像,这有助于诊断,医疗保健,农业,零售和监视系统。AI通过基于面部识别,虹膜识别,指纹分析和语音识别的准确有效的身份验证方法,在计算机视觉中起关键作用。通过动手活动和现实世界的例子,与会者将获得实用技能,以有效地使用AI在教学和研究中使用不同的算法。在计划结束时,参与者将准备将AI工具整合到他们的工作中,提高他们通过现代技术来教授和解决安全挑战的能力。这将通过增强他们在这些关键领域的专业知识和教学能力来使参与者受益。主要课程内容:针对计算机视觉应用程序的最新实施介绍。机器学习基础知识,使用数据预处理和数据可视化。监督和无监督的学习方法,SVM分类,神经网络和应用程序。深度学习方法的简介和基于DL的其他架构及其应用。用于计算机视觉,生物特征和医学成像实现的深度学习体系结构。医学图像数据处理和分析。用于生物医学成像,基于CT扫描/MRI的图像分析,眼底和医学图像分类的AI/ML。对象检测/跟踪算法(例如Yolo等),诸如UNET等分段算法等使用张量流/Pytorch识别人类活动/动作/生物识别。张量流/keras/pytorch/jupyter和colab的基础知识。使用Python/Matlab使用数据预处理和数据可视化。使用Python/Matlab的动手会话。CV和AI算法在硬件平台上实现,例如Jetson Nano,TX2和Pynq等。主持此计划的教师:该计划将由Nit Warangal的教职员工进行;邀请来自IIT/NIT/IIIT的有关领域的院士在该计划中发表讲座。也有望作为课程的一部分提供行业的演讲者。
哺乳动物的大脑由数千万到数千亿个神经元组成,这些神经元以毫秒级的时间尺度运行,而目前的记录技术只能捕捉到其中的一小部分。能够以高时空分辨率对神经活动进行采样的记录技术一直难以扩展。研究最深入的哺乳动物神经元网络(例如大脑皮层)呈现出分层结构,其中最佳记录技术可在大面积上进行密集采样。然而,对特定应用设计的需求以及大脑的三维结构与二维微加工技术之间的不匹配严重限制了神经生理学研究和神经假体。在这里,我们讨论了一种可扩展神经元记录的新策略,即将玻璃包覆微线束与来自高密度 CMOS 体外 MEA 系统或高速红外摄像机的大规模放大器阵列相结合。由于玻璃包覆微线中芯金属的高导电性,允许使用超薄金属芯(低至 < 1 µ m)和可忽略不计的杂散电容,因此实现了高信噪比(< 25 µ V RMS 本底噪声,SNR 高达 25)。尖端的多步电化学改性可实现超低接入阻抗和最小几何面积,这与芯直径基本无关。我们表明,可以减小微线尺寸,以几乎消除插入时对血脑屏障的损伤,并且我们证明微线阵列可以稳定地记录单个单元活动。将微线束和 CMOS 阵列相结合可以实现高度可扩展的神经元记录方法,将电神经元记录的进展与硅微加工的快速进展联系起来。系统的模块化设计允许自定义记录位置的排列。我们采用微创、高度绝缘和功能化的微线束将二维 CMOS 架构扩展到第三维,这种方法可以转化为其他 CMOS 阵列,例如电刺激设备。
收据(b)可退还的申请费1,00,000 1,47,09,735 EMD由成功投标人存入12,14,400余额考虑的余额考虑为1,33,29,600延迟付款的利息 @12%的延迟付款 @12%的12%,总计15 65,735总计(b)1,47,09,735 3 3付费(c)。电子拍卖过程成本为2,714 II。Fees of the Liquidator 10,37,295 iii Fees of the Support professionals 4,05,000 iv Legal Counsel Fees 1,35,000 v Legal opinion fees 20,000 vi Publication costs (Public Announcement, 48,616 vii Others (GST and TDS) - GST 58,500 2,44,982 - TDS 1,86,482
摘要 — 随着光通信的覆盖范围不断缩小,光子学正从机架到机架数据通信链路转向需要不同架构的厘米级计算机内应用 (computercom)。集成光学微环谐振器 (MRR) 正成为满足更严格的面积和效率要求的有吸引力的选择:它们通过波分复用 (WDM) 和高带宽密度提供缩放。在本文中,我们介绍了在 45 nm CMOS 中单片集成的用于 computercom 的紧凑型电光发射 (TX) 和接收 (RX) 宏。它们与 MRR 调制器和光电探测器一起工作,并包括所有必要的电子器件和光学器件,以实现片上数据源和接收器之间的光学链路。通过感测驱动电子器件中的光学设备的偏置电流而不是使用外部工作点感测光学器件,实现了最紧凑的热稳定性实现。使用场效应晶体管作为加热元件(在单片集成平台中是可能的)可进一步减少热控制所需的面积和功率。TX 宏的工作数据速率高达 16 Gb/s,消光比 (ER) 为 5.5 dB,插入损耗 (IL) 为 2.4 dB。RX 宏在 12 Gb/s 时灵敏度为 71 µ A pp,BER ≤ 10 − 10。用宏构建的芯片内链路在 10 Gb/s 时实现 ≤ 2.35 pJ/b 的电气效率和 BER ≤ 10 − 10。两个宏都在 0.0073 mm 2 内实现,每个宏的带宽密度为 1.4 Tb/s/mm 2。
目录2 1.简介3 2。操作原理4 3。nemosense 5 DeWesoft Nemosense配置工具应用程序5 DeWesoft Historian软件5配置模式6操作模式(测量)12同步13 LED的含义14 4.MQTT主题和有效载荷16 5。硬件配置22 6。Specifications 24 General device specifications: NEMOSENSE 24 Battery pack (B option) extension specifications: 24 Measurement specifications: 3xMEMS-ACC 25 Dimensional drawing: NEMOSENSE-3xMEMS-ACC 26 Dimensional drawing: NEMOSENSE-B-3xMEMS-ACC 27 Dimensional drawing: NEMOSENSE-G-3xMEMS-ACC 28 Dimensional drawing: NemoSense-M-3XMEMS-ACC 29尺寸图:Nemosense-MG-3XMEMS-ACC 30尺寸图:Nemosense-BMG-3XMEMS-ACC 31关于此文档32
如果源数据中没有每日剂量,则可以使用最常见剂量:对于每个源药物概念或源/目标药物概念组合,定义最常见剂量,然后将其应用于缺少剂量的记录。如果根本没有每日剂量,可以使用 ATC DDD(定义每日剂量)作为用于成人主要适应症的药物的假定平均每日维持剂量 4 。该方法在 OHDSI 论坛 5 上进行了讨论,并在口服固体药物上进行了测试。使用另一个合理的估计来评估方法的合理性:根据以下处方计算结束日期并假设服药的最常见持续时间应为 7/30/60/90 天。此外,我们审查了来源中 200 种最常见药物的结果,并得出结论,在大多数情况下,ATC DDD 方法是适用的(例如,来源药物是“氨氯地平 5 毫克口服片”,总量 = 28 片,ATC DDD = 5 毫克 => 计算持续时间 = 28 天)。但是,这种方法有一些局限性。一些药物的剂量不同,适用于不同的治疗目的,例如,阿司匹林作为镇痛药/解热药的剂量为 3 克/天,作为抗血栓剂的剂量为 1 片/天(与强度无关)。