目的:BCI(脑部计算机界面)技术以三种模式运行:在线,OfflINE和伪内线。在在线模式下,经常分析实时脑电图数据。在offl ine模式下,后来获取并处理信号。伪在线模式处理收集的数据,就像实时接收一样。主要的区分是OfflINE模式经常分析整个数据,而在线和伪在线模式仅在短时间窗口中分析数据。offlINE分析通常是使用异步BCI进行的,该分析将分析限制为预先确定的时间窗口。异步BCI与在线和伪在线模式相吻合,允许灵活的心理活动持续时间。offlINE处理往往更准确,而在线分析对治疗应用更好。伪在线实现近似于在线处理而无需实时限制。与现实生活相比,许多BCI研究都引入了偏见,从而影响了分类算法的性能。方法:因此,本研究论文的目的是扩展以O fflINE模式运行的当前MOABB框架,以便允许在伪内部设置中使用不同的算法与基于重叠滑动窗口的技术的使用进行比较。这样做将需要在数据集中引入空闲状态事件,该事件考虑了所有不是任务思维的不同可能性。为了验证算法的性能,我们将使用归一化的Matthews相关系数(NMCC)和信息传输率(ITR)。主要结果:我们分析了过去15年的最新算法,该算法是由几个受试者组成的几个运动图像(MI)数据集,显示了从统计学的角度来看两种方法之间的差异。引人注目的能力:分析在OfflINE和伪在线模式中不同算法的性能的能力将使BCI社区获得有关分类算法性能的更准确和全面的报告。
摘要。目标。本研究对开放脑电图数据集进行了广泛的大脑计算机界面(BCI)可重复性分析,旨在评估现有的解决方案并建立开放且可重复的基准测试,以有效比较该领域。对这种基准的需求在于产生未公开的专有解决方案的快速工业进步。此外,科学文献是密集的,通常具有具有挑战性的评估,从而使现有方法之间的比较艰巨。方法。在一个开放式框架中,在36个公开可用的数据集中对30个机器学习管道(分为原始信号:11,Riemannian:13,深度学习:6)进行了精心重新实现和评估,包括汽车图像(14),p300(15)(15)和SSVEP(7)。该分析结合了统计荟萃分析技术,以进行结果评估,包括执行时间和环境影响注意事项。主要结果。该研究产生了适用于各种BCI范式的原则和鲁棒结果,强调运动图像,P300和SSVEP。值得注意的是,利用空间协方差矩阵的Riemannian方法表现出卓越的性能,强调了大量数据量的必要性,以通过深度学习技术实现竞争成果。全面的结果是公开访问的,为将来的研究铺平了道路,以进一步提高BCI领域的可重复性。意义。这项研究的重要性在于它在建立严格和透明的基准的BCI研究中做出的贡献,为最佳方法论提供了见解,并强调了可重复性在推动该领域进步方面的重要性。
摘要。目的。本研究对开放的脑电图数据集进行了广泛的脑机接口 (BCI) 可重复性分析,旨在评估现有解决方案并建立开放且可重复的基准,以便在该领域进行有效比较。这种基准的必要性在于快速的工业进步,这导致了未公开的专有解决方案的产生。此外,科学文献密集,通常以难以重复的评估为特色,使现有方法之间的比较变得困难。方法。在一个开放的框架内,30 个机器学习管道(分为原始信号:11、黎曼信号:13、深度学习:6)在 36 个公开可用的数据集中被精心重新实现和评估,包括运动想象 (14)、P300 (15) 和 SSVEP (7)。该分析结合了统计荟萃分析技术来评估结果,包括执行时间和环境影响考虑。主要结果。该研究得出了适用于各种 BCI 范式的原则性和稳健性结果,重点是运动想象、P300 和 SSVEP。值得注意的是,利用空间协方差矩阵的黎曼方法表现出优异的性能,强调了需要大量数据才能通过深度学习技术实现具有竞争力的结果。综合结果是公开的,为未来研究进一步提高 BCI 领域的可重复性铺平了道路。意义。这项研究的意义在于它有助于为 BCI 研究建立严格透明的基准,提供对最佳方法的见解,并强调可重复性在推动该领域进步方面的重要性。