在过去十年中,太空探索的力度大大增加,因此需要新的方法来研究行星和其他天体。现代趋势是制造能够从更高角度侦察表面的航天器,而无人机已被证明是最有用的。一般来说,无人机以其灵活性、速度、悬停能力、避障、目标跟踪和跟随而闻名。认为任何类型的无人机都适合太空应用都是合理的,因为它们都具有可以满足任务要求的优势。太空领域的设计选择深受一些限制的影响,例如最大尺寸、总重量、成本、环境、温度。此外,还需要考虑使平台能够执行任务的基本要求,这些要求通常由各种子系统来确保:热、通信、机载数据处理、电力、推进以及制导、导航和控制。太空探索的主要焦点是火星和旋翼机概念:事实上,Ingenuity 直升机就是一个很好的例子,如图 1 所示,它于 2021 年在红色星球上进行了首次飞行。火星大气与地球不同,这带来了特殊的空气动力学挑战。第一个很大的变化是低大气密度,再加上无人机尺寸有限,导致弦基雷诺数流动非常低(103-104)[1]。这些流动更多的是以粘性力而非惯性力为特征,导致机翼性能效率下降。这会影响升力,但较低的重力加速度(3.71 m/s2)略微补偿了升力。自 20 世纪 30 年代以来,人们在该领域进行了各种研究,并且可以确定三个描述流动行为的区域:亚临界( Re < 10 5 )、临界( Re ∼ 10 5 )和超临界( Re > 10 5 )。对于火星研究,重点放在亚临界区域,其中层流边界层倾向于分离,导致阻力系数较大,升力系数降低。这种层流分离流的不稳定性导致向湍流的转变,这会引起重新附着,从而产生层流分离气泡,影响翼部的性能。可以采用各种方法来进行气动分析:例如,将流动视为完全层流 [2] 或使用 RANS、LES
对于某些组织来说,这种紧迫感已开始转化为行动。例如,法国石油和天然气公司TotalEnergies已宣布计划在2030年之前的7 GW到2020年的安装可再生发电能力100GW。1个组织(例如Enel和Eni)正在从事绿色氢项目。 2壳,赤道和总能量正在共同致力于捕获和存储北海的碳排放,这是一个名为“北极光”的项目的一部分。 3德国电力公司E.On已与苏黎世保险合作推出了为电动汽车司机推出的保险产品,而BP已向Iotecha投资了700万美元,作为其计划到2030年建立70,000个公共电动汽车收费站的一部分。。1个组织(例如Enel和Eni)正在从事绿色氢项目。2壳,赤道和总能量正在共同致力于捕获和存储北海的碳排放,这是一个名为“北极光”的项目的一部分。 3德国电力公司E.On已与苏黎世保险合作推出了为电动汽车司机推出的保险产品,而BP已向Iotecha投资了700万美元,作为其计划到2030年建立70,000个公共电动汽车收费站的一部分。5个能源平台也见证了浓厚的兴趣。西班牙能源公司Repsol提供了一种解决方案,该解决方案将屋顶太阳能发电机(屋顶工)与消费者(匹配者)连接起来。6
(参考编号:IJME686,DOI 编号:10.5750/ijme.v163iA3.803)MP Mathew 1、SN Singh 1、SS Sinha 1 和 R Vijayakumar 2 1 印度理工学院德里分校应用力学系,印度新德里 2 印度理工学院马德拉斯分校海洋工程系,印度钦奈。 关键日期:提交:30/11/20;最终接受:12/08/21;发布日期 16/11/21 摘要 研究航空母舰的外部空气动力学对于确保飞机和飞行员在起飞和恢复过程中的安全至关重要。前进方向的速度不足和下洗流共同作用,使飞机沿下滑道路径产生下沉效应,在海军航空术语中称为“涡流”。这种现象是导致飞行员接近航空母舰时工作量可能增加的主要原因。在公开领域,关于减轻扰流效应的方法和手段的文献很少。与汽车行业的情况不同,汽车行业有通用的“Ahmed 车身”,护卫舰/驱逐舰有简化护卫舰 (SFS),世界各地的研究人员可以通过 CFD 对其进行实验和验证,但目前还没有通用的航空母舰模型来开展 CFD 代码的实验和验证。本研究的目的是定义印度理工学院德里分校开发的通用航空母舰模型 (GAC),并对 GA 进行数值研究
数据源:输入输出表:OECD的输入输出表数据库;工人收入:经济分析局工资;资本投资:彭博社新能源金融Battman V2.0模型,Anl Everbatt模型和NREL内部估计。X-EV需求和电池化学:BNEF 2020。长期电动汽车前景2020。CE需求:Pillot,C。2018。“ 2017 - 2025年可充电电池市场”,Avicenne Energy,Dermany电池展,5月15日;固定存储需求和电池化学:BNEF2019。长期储能前景。注释:从2025年开始,所有国内库中有45%被回收,2030年及以后上升到90%;国内回收和储备金可以满足XEV/SS CO和LI的所有需求; US NI储备不足以满足需求,因此对NI/CO矿山的投资不包括在电池供应链上投资4300亿美元(2025-2040)可以将GDP增加超过50%,至近6750亿美元,并每年平均增加315,000个工作岗位。
本文提出,新兴现代信息技术是理解量子物理,特别是微观宇宙规律的最简单手段。分析认为,计算机辅助建模结合了实验所需的所有基本教学功能,从而提高了培训的有效性。关键词:信息技术、量子物理、建模。
本文提出了新兴现代信息技术作为理解量子物理,特别是微观宇宙规律的最简单手段的概念。分析表明,计算机辅助建模结合了实验所需的所有基本教学特征,从而提高了培训的有效性。关键词:信息技术、量子物理、建模。引言、文献综述、方法众所周知,使用现代信息技术是实验课的最佳工具,它为提高培训课程的有效性提供了广阔的机会[1]。基于这种方法,信息技术成为理解量子物理,特别是微观宇宙规律的最简单手段。这个机会将使学生更容易理解量子物理的基本原理,并创造一个有利的环境来展示这一理论的实际意义。使用信息技术或基于计算机的模型可以将物理实验与自然过程结合起来。因此,建模与传统方法的不同之处在于展示了有效的实验[2]。基于计算机的建模结合了实验所需的所有基本教学特征,从而提高了培训的有效性。例如,我们可以在量子物理学中使用计算机建模来研究光电效应。由于学生通常进行两个实验室,一个在实验设备上工作,另一个在计算机模型上工作。然后比较和讨论在实验室工作答辩中获得的结果。此外,致力于研究发射光谱(锌、汞、钠)精细结构的实验室研究可以通过计算机模型来补充,以研究塞曼效应。塞曼效应的大型实验室设置涉及许多复杂且昂贵的工具。例如,在测量黄色钠双线态后,学生可以在计算机模型上对其进行研究。这种实验和计算机实验的结合理想地相互补充。请注意,这些实验室设备是非常罕见的设备。我们研究了为教育机构的自然和数学专业建模现代化量子物理实验室的基础知识。研究的结果是,我们得出结论,需要某些要求才能实现实验的高效率 [1]。此外,计算机建模(软件)还应满足通用性、充分性、准确性、效率性的要求[2]。
Yogendra Joshi 博士,顾问 机械工程学院 佐治亚理工学院 Zhuomin Zhang 博士 机械工程学院 佐治亚理工学院 Mostafa Ghiaasiaan 博士 机械工程学院 佐治亚理工学院 批准日期:2019 年 10 月 17 日
第 2 章背景和文献综述 7 2.1 背光单元配置 7 2.1.1 侧光式背光单元 8 2.1.1 直下式背光单元 8 2.2 户外数字显示器的热管理 10 2.2.1 主动和半主动冷却 11 2.2.2 开环和闭环冷却 12 第 3 章实验和模拟设置 16 3.1 模拟数据收集实验 16 3.1.1 55 英寸户外数字显示器的户外测试 16 3.1.2 防暴玻璃的真太阳测试 18 3.2 初始模拟设置和设置 18 第 4 章55 英寸户外数字显示器的模拟结果 26 4.1 3,500 尼特亮度结果 26 4.1.1危险户外环境 26 4.1.2 与户外测试的比较 29 4.2 6,000 尼特亮度结果 31 4.2.1 危险户外环境 32 4.2.2 与户外测试的比较 32 4.3 网格大小研究 35 4.4 网格技术效果 39 4.5 模拟包比较 40 第 5 章使用比尔定律和间隙调整效应对 LCD 进行模拟改进 44 5.1 防暴玻璃辐射特性测试 44 5.2 防暴玻璃中的热负荷重新分配 46 5.2 热负荷重新分配和改进的模拟结果 49
3D 数字人体建模 (DHM) 工具 RAMSIS 用于优化军用车辆系统的产品开发。DHM 在产品开发中的应用已经存在多年。军用车辆开发的 DHM 不仅需要车辆乘员的表示,还需要装备的表示和此类装备对作战人员的影响的模拟。为了真实地模拟军用车辆中的乘员,无论是陆基还是空基,装备都必须成为扩展人体模型的一个组成部分。仅仅将 CAD 几何图形附加到一个人体模型元素上是不够的。装备尺寸需要根据人体测量学进行扩展,需要根据解剖学考虑对关节活动性的影响。这些方面必须集成到姿势预测算法中,以生成客观、可靠和可重复的结果,帮助设计工程师制造更好的产品。这些产品对作战人员来说是安全、舒适和合适的。