学制 北京航空航天大学 硕士 法学 英语 2 北京航空航天大学 硕士 通信与信息系统 英语 2.5 北京航空航天大学 硕士 集成电路设计 英语 2.5 北京航空航天大学 硕士 信息与通信工程 英语 2.5 北京航空航天大学 硕士 生物医学工程(工学) 英语 2.5 北京航空航天大学 硕士 力学(工学) 英语 2.5 北京航空航天大学 硕士 系统工程 英语 2.5 北京航空航天大学 硕士 控制科学与工程 英语 2.5 北京航空航天大学 硕士 载运工具运用工程 英语 2.5 北京航空航天大学 硕士 交通运输规划与管理 英语 2.5 北京航空航天大学 硕士 交通信息工程与控制 英语 2.5 北京航空航天大学 硕士 道路与铁道工程 英语 2.5 北京航空航天大学 硕士 适航技术与管理 英语 2.5 北京航空航天大学 硕士 计算机软件与理论 英语 2.5北京航空航天大学 硕士 动力工程及工程热物理 英语 2.5 北京航空航天大学 硕士 电子科学与技术 英语 2.5 北京航空航天大学 硕士 集成电路科学与工程(工程)英语 2.5 北京航空航天大学 硕士 电气工程 英语 2.5 北京航空航天大学 硕士 材料加工工程 英语 2.5 北京航空航天大学 硕士 材料科学与工程 英语 2.5 北京航空航天大学 硕士 计算机系统结构 英语 2.5 北京航空航天大学 硕士 网络与信息安全 英语 2.5 北京航空航天大学 硕士 计算机与应用技术 英语 2.5 北京航空航天大学 硕士 计算机科学与技术 英语 2.5 北京航空航天大学 硕士 机械工程 英语 2.5 北京航空航天大学 硕士 人机与环境工程 英语 2.5 北京航空航天大学 硕士 航空航天飞行器制造工程 英语 2.5 北京航空航天大学 硕士2.5北京航空航天大学 硕士 飞行器设计 英语 2.5北京航空航天大学 硕士 航空宇航科学与技术 英语 2.5北京航空航天大学 硕士 空间技术应用 英语2 北京航空航天大学 硕士 制冷与低温工程 英语 2.5北京航空航天大学 硕士 数学 英语 2.5北京航空航天大学 硕士 化学 英语 2.5北京航空航天大学 硕士 统计学(自然科学) 英语2.5 北京航空航天大学 硕士学位 集成电路科学与工程 英语 2.5 北京航空航天大学 硕士学位 外国语言学及应用语言学 英语 2.5 北京航空航天大学 硕士学位 德语语言文学 英语 2.5 北京航空航天大学 硕士学位 俄语语言文学 英语 2.5 北京航空航天大学 硕士学位 英语语言文学 英语 2.5 北京航空航天大学 硕士学位 网络空间安全 英语 2.5 北京航空航天大学 硕士学位 电子信息(工程) 英语 2.5 北京航空航天大学 硕士学位 力学 英语 2.5 北京航空航天大学 硕士学位 金融工程与管理 英语 2.5 北京航空航天大学 硕士学位 管理科学与工程 英语 2.5 北京航空航天大学 硕士学位 能源经济与管理 英语 2.5 北京航空航天大学 硕士学位 工商管理 英语 2 北京航空航天大学 硕士学位 企业管理 英语 2.5 北京航空航天大学 硕士学位 会计 英语 2.5 北京航空航天大学硕士 统计学 英语 2.5 北京航空航天大学 硕士 国际贸易 英语 2.5 北京航空航天大学 硕士 金融 英语 2.5 北京航空航天大学 硕士 应用经济学 英语 2.5 北京交通大学 硕士 土木工程 英语 3 北京交通大学 硕士 道路与铁道工程 英语 3 北京交通大学 硕士 电气工程 英语 35 北京交通大学 硕士 土木工程 英语 3 北京交通大学 硕士 道路与铁道工程 英语 3 北京交通大学 硕士 电气工程 英语 35 北京交通大学 硕士 土木工程 英语 3 北京交通大学 硕士 道路与铁道工程 英语 3 北京交通大学 硕士 电气工程 英语 3
在过去的二十年中,金属有机框架(MOF)已成为广泛开发的多孔材料类别,并越来越被认为是基于膜的CO 2分离的有希望的候选者。这种潜力主要源于故意自定义其结构和功能以增强与客人分子相互作用的能力。在这项研究中,我们探讨了基于卟啉的MOF的MOF-525作为混合基质膜(MMM)中的纳米填料,由6fda- dam(6fda:6fda:2,2-2-二甲基苯基)(3,4-二甲基苯基)六氟丙烷氨基丙烷硫氨酸酯dian Hydridiide; CO 2 /N 2和CO 2 /CH 4分离的聚合物二氨基苯)分离。之所以选择此特定的MOF,是因为有可能将其卟啉环金属量化以量身定制CO 2分子与MOF框架之间的相互作用。结果,无需使用很高的纳米颗粒载荷而无需使用很高的纳米颗粒加载而无需使用金属化的MOF-525的MMM的CO 2 /N 2和CO 2 /CH 4分离性能。与裸露的聚合膜和2 wt%的MOF-525 mmm相比,可以观察到2 wt%金属的MOF-525 MMM的膜渗透性和选择性提高约20%。对MMM的气体传输特性的进一步分析表明,改进主要是由于MMM中增强的CO 2溶解度以及金属化的MOF-525和CO 2分子之间的相互作用改善。但是,还发现2和5 wt%是最佳载荷值,高于该值,高于该值,MOF纳米颗粒之间的界面缺陷和由粒子聚集引起的聚合物开始出现,从而降低了膜性能。也通过分子模拟证实了这一点,其中尤其是在高颗粒载荷时观察到麦克斯韦模型上的一些高估,这表明非选择性空隙的凝聚力和堆积。尽管如此,我们在这项研究中已成功地显示了在MMM中使用金属的卟啉MOF进行CO 2分离的高效率和效率,因为仅需要相对较低的颗粒载荷(约2 wt%)才能改善膜性能。
金属有机骨架 (MOF) 的形成依赖于无机节点和有机连接体通过配位自组装形成周期性配位网络。[1] 无机和有机结构单元的多样性使得 MOF 拓扑结构更加多样化,可以满足催化、药物输送或气体分离等特定材料的要求。[2] 通常,相同的节点和连接体可以由不同的试剂(例如金属盐)形成,并形成具有不同连通性、拓扑结构甚至组成的各种产品。[3] 因此,典型的 MOF 合成可以产生两个或多个相,有时甚至在同一反应混合物中也可以产生两个或多个相。[3b] 在某些情况下,混合相可以出现在同一个粒子中,甚至在同一晶体内,作为共生或纳米级不均匀性,说明了骨架结晶过程和结构的复杂性。[3b] 这种现象在 Zr 基 MOF 中尤为普遍。例如,基于芘的 NU-1000 可以在晶体中心包含多晶型物 NU-901 的结构图案。[4] 尽管 NU-1000 和 NU-901 都由八个相连的 Zr 簇组成,但 NU-901 具有四方孔,其孔体积低于 NU-1000 中的六方孔。[4] 另一方面,UiO-66 经证实通常包含有序缺失簇相 reo UiO-66 的区域,其中四分之一的 Zr-氧簇缺失。[5] 在这两种情况下,这些特性都对孔径产生决定性影响,从而影响材料性能。[3a] 许多合成方案还需要在形成框架之前由前体物种形成无机节点本身,这使情况变得更加复杂。例如,在由 Zr 6 O 4 (OH) 4 团簇构建的 Zr 基 MOF 的合成中,预计六核 Zr-oxo 节点会从 ZrCl 4 或 ZrOCl 2 ·8H 2 O 前体中形成。[6] 最近的研究开始更具体地描述 pH 值、前体来源和浓度以及溶剂类型等合成参数对溶液中形成的簇结构的影响。[7]
催化,17-20药物输送,21,22生物成像,23,24发光感应25-29和固态照明。30,31发光金属有机框架(LMOFS),32-34是一类MoF级,在光激发时发出灯光的光亮发光发射LMOF可以源自发光的无机金属离子或发射性链接器。33作为化学传感器,LMOF提供了一种用于检测化学物种的替代方法,与使用昂贵的仪器相比,通过检测光学信号的变化,例如发光淬火,增强或交替的发射波长,在暴露于化学物质分析物时可以通过简单的仪器(例如荧光仪)观察到的化学物质分析物时,可以进行发射波长。35产生的光致发光性能的变化因特定感应机制而异。发光淬火可能会通过在LMOF和分析物之间的简单能量转移而导致,其中LMOF的吸收光谱可能与分析物的发射曲线重叠。发光淬火的另一种可能的情况围绕电子传递过程旋转,从而使LMOF的激发电子转移到分析物的Lumo,并防止光子从S 1到S 0转换的电子的松弛中发射。36苯甲醛是一种有机化合物,在涉及食品,化妆品,树脂,染料等的各种化学过程中通常用作原料。以极低的剂量,可以在食物中使用它来模拟杏仁调味料。通过摄入量增加的暴露与癫痫发作和抽搐有关。暴露于低37然而,已知通过吸入量较高的量后,已知苯甲醛会引起呼吸系统和呼吸急促的刺激。对非人类物种的研究归因于苯甲醛的剂量增加是遗传毒性和产生诱变作用。美国环境保护局(EPA)将苯甲醛的暴露限制设定为约15毫克/天。38在本文中,我们介绍了发光Zn-MOF(LMOF-341)的使用,以选择性地检测含有醛功能基团的其他化学物质。
今天,≈20%的电消耗用于制冷;而,最终能量的约有50%用于加热应用。在这种情况下,许多冷却装置和热泵正在过渡到使用CO 2作为环保制冷剂,有利于碳圆形经济。尽管如此,CO 2仍然存在一些局限性,例如较大的工作压力(70-150 bar)和31°C的临界点,这损害了效率并增加了技术复杂性。最近,报告了MIL-53(Al)化合物中一种创新的呼吸 - 解放机制,这意味着在CO 2加压下,结构过渡的加压促进了气体吸附,并克服了独立CO 2的局限性。在这里,据报道,MOF-508B的呼吸 - 热量效应超过40%的MIL-53(AL)。此外,在室温下运行的第一个温度计设备,在CO 2的26 bar下使用。在这些条件下,该材料的值为𝚫t≈30K,达到56°C的加热温度,冷却温度为-10°C,这对于空间加热,空调,食物制冷和冷冻应用已经有用。
为中枢神经系统开发治疗性干预措施是具有挑战性的,因为这些疾病的治疗重点是解决这些疾病的症状,并且不会阻止其进展。5,6,可用治疗的第一线可能会产生疾病症状的侧面作用,并且并非所有患者都对具有相同临床诊断的特定疗法做出反应。7大脑中的低浓度铜与帕金森氏病8和多发性硬化症有关。9个Menkes综合征是由ATP7A基因缺陷引起的。缺陷使身体很难在整个身体中正确分配铜。因此,人体的大脑和其他部位没有得到足够的铜,并且在小肠和肾脏中积聚。因此,建议将这种金属的供应作为减少神经元恶化并防止疾病进展的替代方法。10,11 Cooper在人类细胞中显示出重要的生物学关系,因为它是不同人体器官的必不可少的微量营养素,它们具有高代谢活性,例如肝脏,脑,肾脏和心脏。12,13,但此痕量元素也会影响阿尔茨海默氏病的外观和/或进展。因此,补充
对于具有各向异性特性的设备,必须使用定向孔的微观图形材料。晶体和多孔金属有机框架(MOF)是理想的材料,因为它们的化学和结构性突变性可以精确调整功能性能,用于从微电子到光子学的应用。在此,设计了一个可模式的莫弗胶:通过在X射线暴露下使用光掩膜,MOFFILM在辐照区域分解,在未暴露的区域中保持完整。MOFFILM同时用作抗药性和功能性多孔材料。虽然对齐的Cu(OH)2纳米质体的异质增长用于沉积定向的Moffimfms,但通过将溴化二羧酸酯配体(BR 2 BDC)整合到基于铜的MOF CU 2 L 2 L 2 L 2 L 2 L 2 L 2 L 2 LABCO(DABCO(DABCO)中,可以实现对辐射的敏感性(dabco = 1 ockco = 1,4-diazabice; BDC/BR 2 BDC)。 用激光辐射时的石版样品充当辐射时的不同光栅,从而确定了扩展的MOF微图案的质量。 此外,定向的MOF模式通过荧光染料功能化。 结果通过旋转激光激发的极化角,显示了MOF中染料的比对。 通过控制对光的功能响应,该MOF模式协议可用于光子设备的光学组件的微分化。虽然对齐的Cu(OH)2纳米质体的异质增长用于沉积定向的Moffimfms,但通过将溴化二羧酸酯配体(BR 2 BDC)整合到基于铜的MOF CU 2 L 2 L 2 L 2 L 2 L 2 L 2 L 2 LABCO(DABCO(DABCO)中,可以实现对辐射的敏感性(dabco = 1 ockco = 1,4-diazabice; BDC/BR 2 BDC)。用激光辐射时的石版样品充当辐射时的不同光栅,从而确定了扩展的MOF微图案的质量。此外,定向的MOF模式通过荧光染料功能化。通过旋转激光激发的极化角,显示了MOF中染料的比对。通过控制对光的功能响应,该MOF模式协议可用于光子设备的光学组件的微分化。
在近年来,原位和操作同步辐射高分辨率高分辨率X射线衍射(HR-PXRD)实验已被认为是公开主要相互作用和原发性吸附位点的强大工具[16,20-22] [16,20-22],在不断范围内[17,23,23,24] [17,23,24] [17,23,24],[17,23,26] [25,26] [25,26] [25,26] [25,26] [25,26] [25,26] [25,26] [25,26] [25,26] [25,26] [25,26] [25,22][15,16,27,28]尽管有这些示例,但到目前为止获得的信息仅限于来宾分子的定位和宿主框架的修改。直到最近,[16,17,29]为建模和了解整个吸附过程,包括吸附等温线的结构。然而,这种方法尚未扩展到极限,超出了晶体结构的确定,宿主 - 具型相互作用的描述和来宾定量,以研究其他特性,例如吸附过程的热力学。在这项工作中,我们表明可以从如今的pxrd Data
近年来,原位和原位同步辐射高分辨率粉末X射线衍射(HR-PXRD)实验已被认为是一种强有力的工具,可以揭示各种无机、[17,23,24]有机、[25,26]和金属有机多孔材料中的主要相互作用和主要吸附位点[16,20–22]。[15,16,27,28]尽管有这些例子,但迄今为止获得的信息仅限于客体分子的定位和主体框架的修改。直到最近,[16,17,29]才有人努力模拟和理解整个吸附过程,包括构建吸附等温线。然而,这种方法还没有发展到极限,除了晶体结构测定、主体-客体相互作用描述和客体量化之外,还不能研究其他性质,如吸附过程的热力学。在这项工作中,我们展示了可以从目前尚未充分利用的 PXRD 数据中提取大量隐藏但易于获取的信息