介电封装材料在太阳能电池领域有着广阔的应用前景,但不尽如人意的光管理能力和相对较差的介电性能限制了它们在光伏和微电子器件中的进一步应用。在此,设计了一种界面融合策略来设计MOF(UiO-66-NH 2)与酸酐封端的酰亚胺低聚物(6FDA-TFMB)的界面,并制备了一种具有增强前向散射和稳健孔隙率的新型MOF簇(UFT)。UFT用作双酚A环氧树脂(DGEBA)的光学和介电改性剂,在较低的UFT含量(0.5–1 wt%)下可以制备具有高透光率(> 80%)、可调雾度(45–58%)和优异介电性能的UFT环氧复合材料,这为太阳能电池中具有高效光管理的介电封装系统提供了最佳设计。此外,UFT环氧复合材料还表现出优异的紫外线阻隔、疏水、热和机械性能。这项工作为共价键介导的纳米填料的合成以及用于能源系统、半导体、微电子等的介电封装材料的雾度和介电性能的调节提供了模板。
在固态电解质(SSE)中使用金属有机框架(MOF)一直是一个非常有吸引力的研究领域,在现代世界中引起了广泛关注。SSE可以分为不同的类型,其中一些可以与MOF结合使用,以通过利用高表面积和高孔隙率来改善电池的电化学性能。但是,它也面临许多严重的问题和挑战。在这篇综述中,分类的不同类型的SSE类型,并描述了添加MOF后这些电解质的变化。之后,引入了这些带有MOF的SSE,以用于不同类型的电池应用,并描述了这些SSE与MOF结合在细胞电化学性能上的影响。最后,提出了MOFS材料在电池应用中面临的一些挑战,然后给出了一些解决MOF的问题和开发期望的解决方案。
摘要:近几十年来,通过纳米材料共同输送化疗药物引起了广泛关注,因为它可以改善药物向肿瘤组织的输送,降低全身效应并提高治疗效果。高孔隙率、大孔体积和表面积以及可调节的结构使金属有机骨架 (MOF) 成为有前途的药物输送系统 (DDS)。特别是纳米级 Zr 连接的 MOF,例如 MOF-808,在生物医学应用方面具有显着优势,例如孔隙率高、稳定性好和生物相容性好。在本研究中,我们报告了装载在 MOF-808 纳米粒子中的氟尿苷 (FUDR) 和卡铂 (CARB) 向癌细胞的有效双重药物输送。纳米粒子进一步通过聚(丙烯酸-甘露糖丙烯酰胺)(PAAMAM)糖聚合物涂层进行功能化,以获得癌细胞中高度选择性的 DDS 并增强化疗的治疗效果。虽然发现 MOF-808 可以增强 FUDR 和 CARB 对癌细胞的单独治疗效果,但 FUDR 和 CARB 的结合会产生协同效应,进一步增强游离药物的细胞毒性。通过改进的激活方案可以增强 CARB 负载,从而增强 CARB 负载 MOF 的细胞毒性,而用 PAAMAM 糖聚合物涂覆 MOF-808 可以增加研究中使用的癌细胞对纳米颗粒的吸收,并在 HepG2 人肝细胞癌细胞中提供具有高细胞毒性的特别重要的选择性药物输送。这些结果表明,通过纳米载体输送和协同处理可以增强细胞毒性,并且 MOF-808 是未来药物输送研究的可行候选者。关键词:金属 - 有机骨架、糖聚合物、药物输送、癌症、协同、靶向、碳水化合物 ■ 简介
金属有机骨架 (MOF) 已成为合成晶体网络的主要形式之一。MOF 可以实现节能和原子经济的自组装,[1] 并且其多样性提供了一个多功能工具箱,具有化学和结构精度,可用于定制材料以实现不同的功能。 [2,3] 关键是利用 MOF 独特且可调节的内部孔环境,其超高孔隙率需要很大的比表面积。 [3] 然而,常见的 MOF 通常以粉末形式收集,这在大多数应用中非常不切实际。 [4] 在追求相干的 MOF 材料时,已经提出了金属有机气凝胶 (MOA),即由具有化学交联基质的 MOF 制成的气凝胶。 [5] 然而,MOA 的制造具有挑战性,因为 MOF 缺乏形成具有足够结构
摘要:薄膜上和晶体内部的激光干扰图案是今天创建用于光学数据处理所需模式的功能强大的工具。在这里,我们分别通过水解吸和热分解过程在金属有机框架(MOF)薄膜上表现出可逆和不可逆的激光干扰。已经实现了不可逆的干扰模式,其带有高达5 µm的条带的不可逆转的干扰模式已经实现,并且使用共焦拉曼和反射光谱以及原子力显微镜表征了其形态。我们透露,将干扰最大值之间的距离从10.5降低到MOF的5 µm记录,使不可逆模式的表面粗糙度增加了10倍。另一方面,可逆的激光模式提供了可变光学对比度的完全无损的效果。获得的实验结果为使用MOF晶体作为光敏材料的模板图中所需模式的模板图中的光敏材料开放了前景。
从而导致抗肿瘤药物浓度不足,无法抑制肿瘤细胞的生长。近年来,虽然有一些关于刺激响应性药物释放载体增加骨转移局部药物浓度的报道,13 但很少有研究解决纳米颗粒的骨靶向性和随后的骨解吸之间的难题。硼替佐米(BTZ)是FDA批准的第一个蛋白酶体抑制剂,14 它能特异性地抑制蛋白酶体26S亚基的活性,显著降低NF-kB抑制蛋白(IKB)的降解,15 IKB可以抑制核因子kB(NF-kB)的活性,从而选择性地抑制生长相关基因的表达,最终导致肿瘤细胞凋亡。 BTZ临床上一般用于治疗多发性骨髓瘤和套细胞淋巴瘤。16,17
©2021。此手稿版本可在CC-BY-NC-ND 4.0许可下提供http://creativecommons.org/licenses/by-nc-nc-nd/4.0/
作为全球领先的工业气体和工程公司,琳德通过提供高质量的解决方案,技术和服务,使锂电池的世界每天都在使锂电池的生产更加生产力。我们与锂电池客户一起从研发和飞行员量表到大规模生产。通过我们的专有天然气生产技术和专业知识,我们与R&D和飞行员量表的锂电池客户合作,确定最适合其流程的最佳气体供应和杂质控制。随着我们的客户进行大规模生产,他们可以以优化的总体使用成本来利用较早的学习,并具有一流的安全性,质量和可靠性。我们的全球影响力还可以确保当客户在不同地区开始设施时,无缝复制。
中空碳材料因其独特的多孔结构和电性能被视为催化和电化学储能中重要的支撑材料。本文以铟基有机骨架InOF-1为骨架,在惰性氩气下通过纳米氧化铟与碳基质的氧化还原反应形成铟颗粒。具体地说,通过在脱羧过程中结合铟的熔融和去除,原位获得了一种多孔中空碳纳米管(HCNS)。合成的HCNS具有更多的电荷活性位点以及短而快的电子和离子传输通道,以其独特的内部空腔和管壁上相互连通的多孔结构,成为碘等电化学活性物质的优良载体。此外,组装的锌碘电池(ZIBs)在1 A g -1 时提供234.1 mAh g -1 的高容量,这确保了电解质中碘物质的吸附和溶解达到快速平衡。基于HCNS的ZIBs的倍率性能和循环性能得到大幅提升,表现出优异的容量保持率,并表现出比典型的单向碳纳米管更好的电化学交换容量,使HCNS成为新一代高性能电池的理想正极材料。