本数据表中提供的技术信息和说明基于我公司研发部门的知识和经验以及产品在实践中的长期应用结果。由于应用过程中的现场条件不受我公司控制,因此对产品使用的建议和建议不提供任何保证。因此,用户有责任确认所选产品是否适合预期的应用。本技术数据表的当前版本将自动取消有关同一产品的任何先前版本。| 版本:2022 年 11 月 16 日
这本书是我在摩尔多瓦技术大学国家材料研究中心研究和测试中的20年的结果,该大学的多孔半导体领域具有控制形态,并影响其特性。这本书基于作者以及主管和其他研究人员自2002年左右发表的大量论文和其他出版物。当然还包括与许多其他小组的结果进行比较。本书致力于与电化学蚀刻制造的多孔III-V和II-VI半导体化合物的制造和比较表征有关的问题。如今,半导体化合物的阳极化代表了一种成本效益的自上而下方法。 为了扩展应用的面积,提议将电化学蚀刻和脉冲的电化学沉积方法结合起来,以进行微纳米电视制造。 将在本书中详细讨论形态的多功能性和多孔半导体化合物的应用。 可以提及:电化学是以受控方式对半导体化合物的孔隙化的成本效益方法;半导体化合物中的毛孔类型;半导体化合物中孔的自我排序;多层多孔结构,调节孔隙度;根据提议的“跳跃电沉积”,通过脉冲电镀的脉冲电镀均匀沉积金属点的单层。自组织阵列的应用,包括金属功能化的孔。 奖学金如今,半导体化合物的阳极化代表了一种成本效益的自上而下方法。为了扩展应用的面积,提议将电化学蚀刻和脉冲的电化学沉积方法结合起来,以进行微纳米电视制造。将在本书中详细讨论形态的多功能性和多孔半导体化合物的应用。可以提及:电化学是以受控方式对半导体化合物的孔隙化的成本效益方法;半导体化合物中的毛孔类型;半导体化合物中孔的自我排序;多层多孔结构,调节孔隙度;根据提议的“跳跃电沉积”,通过脉冲电镀的脉冲电镀均匀沉积金属点的单层。自组织阵列的应用,包括金属功能化的孔。奖学金所给出的许多结果来自与Kornelius Nielsch教授的合作,在德国汉堡大学的亚历山大·冯·洪堡基金会(Alexander von Humboldt Foundation)向作者提供的研究奖学金(2012- 2014年)(2012-2014)和金属材料研究所(IMW),Leibniz Marchany and Mavristern(如果Dres)(IFW DRES)(IFW DRES),该研究所(IFW) 2018)。
防寒活动旨在提高对寒冷季节的准备,并与提供防寒救生援助(尤其是取暖)“直接”相关,相关问题应归类为冬季活动。因此,无论在哪个季节提供的“常规”人道主义干预不应归类为冬季活动。本计划概述的应对措施将通过实物和现金援助相结合的方式提供。在可行和适当的情况下,将根据现有标准、正常运作的市场的可及性和距离以及所需冬季物品和服务的可用性优先提供现金援助。应对方案是一套最低限度的救济活动和服务可及性,使弱势群体能够充分应对寒冷季节。
在后苏联时代,摩尔多瓦的政治倾向一直受到亲欧派和亲俄派之间不断摩擦的影响。在过去十年中尤其如此,2016 年公开亲俄的伊戈尔·多东当选总统。他的任期于 2020 年结束,当时他寻求连任的努力被亲欧派玛雅·桑杜击败,后者的政党在 2021 年获得了议会多数席位。人们普遍认为最近的这些选举是自由和公平的。现在说这些政治发展是否标志着与过去的彻底决裂还为时过早。为此,人们希望看到一种交替治理的制度能力,反对党在其中发挥作用,而不会威胁到该国的基本取向。
在后苏联时代,摩尔多瓦的政治倾向一直受到亲欧派和亲俄派之间不断摩擦的影响。这种情况在过去十年尤其明显,2016 年公开亲俄的伊戈尔·多东当选总统。他的任期于 2020 年结束,当时他寻求连任的努力被亲欧派玛雅·桑杜击败,后者的政党在 2021 年获得了议会多数席位。最近的这些选举被普遍认为是自由和公平的。现在说这些政治发展是否标志着与过去的彻底决裂还为时过早。为此,人们希望看到一种交替治理的制度能力,反对党在其中发挥作用,而不会威胁到该国的基本取向。
国际咨询委员会 Adriana Velazquez 世界卫生组织,瑞士 Berumen Alexander Pogrebnjak 苏梅国立大学 Bogdan Simionescu 罗马尼亚科学院 Boris Gorshunov 莫斯科物理技术学院,俄罗斯 Emil Cebanu Nicolae Testemitanu 摩尔多瓦共和国国立医科和药学大学 Franz Faupel 基尔大学材料科学研究所,德国 Gert Baumann 柏林大学 Charité 医院,德国 Hans Hartnagel 达姆施塔特技术大学,微波工程和光子学研究所,德国 Hidenori Mimura 静冈大学电子研究所,日本 Jan Linnros 皇家理工学院,瑞典 Lee Chow 中佛罗里达大学,奥兰多,美国 Lorenz Kienle 基尔大学材料科学研究所,德国 Nicolae Jula 军事技术学院,罗马尼亚 Nicolas Pallikarakis 帕特雷大学,希腊 Pascal Colpo 联合研究中心,意大利德国基尔 Ratko Magjarević 克罗地亚萨格勒布大学 Șeref Komurcu 土耳其安纳多鲁医学中心 Sergey Gaponenko 白俄罗斯国家科学院 Serghei Cebotari 德国汉诺威医学院 Thierry Pauporte 法国巴黎国立高等化学学院 Viorel Bostan 摩尔多瓦技术大学 Vladimir Fomin 德国综合纳米科学研究所 Yury Dekhtyar 拉脱维亚里加技术大学生物医学工程与纳米技术研究所
项目概述和目标:由弗吉尼亚理工大学牵头、美国铸造协会 (AFS) 赞助的 AMC 研究项目正在使用 3D 打印砂型铸造技术生产复杂的金属陶瓷复合铸件。与传统的绿砂或粘结砂型铸造相比,这为设计师提供了更大的自由度。该项目以 3D 打印砂型铸造的先前研究和包含陶瓷或硬质金属嵌件的复杂能量吸收铸件的设计为基础,以扩大规模并在各种材料和应用中实施该技术。