大米是大约一半人类最重要的营养来源 [1]。大米不仅满足了世界人口 21% 的能量需求,更是东南亚国家人民的生命线,占他们热量摄入的 76% [2]。大米对其经济的贡献巨大,因此这些国家的社会稳定、粮食安全和经济发展都依赖于大米生产力的提高。由于人口增长、饮食结构变化、经济条件改善和产量提高等多种因素,大米消费量将继续增加 [3]。预计到 2050 年世界人口将达到 90 亿,增加大米产量对于预防未来的粮食危机至关重要。除了全球人口增长之外,气候变化和水稻产量停滞也增加了提高水稻产量的紧迫性。由于气候变化,许多国家的水稻种植受到多种生物和非生物胁迫的威胁。应制定创新策略,设计新的、高产和耐气候性的基因型,以提高水稻种植的可持续性。必须探索农学上重要性状的基因和调控网络,例如产量和产量构成性状、对各种生物和非生物胁迫的耐受性以及稻米品质性状。应开发适当的分子工具用于育种计划,以积累理想的性状和基因。由于分子生物学、基因工程和各种组学领域的惊人进步,这些目标可以通过应用新的分子工具和技术来实现。许多形态和生理性状都需要改良,以提高包括水稻在内的每种作物的遗传产量潜力。例如,在理想型育种的情况下,研究人员可视化水稻植株结构,然后不断改良对作物生产力有直接或间接影响的性状[ 4 ]。 《国际分子科学杂志》的当前特刊名为“水稻的分子研究”,汇集了九篇原创研究文章和一篇评论,利用先进的分子工具揭示了一些关键农学重要属性的分子基础,例如耐盐性、开花、分蘖和叶片角度、粒重以及对褐飞虱和白背飞虱的耐受性。
2型糖尿病(T2DM)会对许多系统和组织造成损害,例如自主神经,骨膜神经,微血管和微血管,从而导致多种糖尿病并发症,并严重递增患者的生活和健康。T2DM视网膜病(DR)是T2DM患者中最常见的微血管并发症之一,也是30至70岁患者失明的第一个原因。因此,如何预防和治疗DR已成为临床糖尿病杂志的重点。目前尚未充分解释DR的发病机理,但作为慢性炎症性免疫疾病,视网膜微血管炎症性疾病,信息和免疫异常是影响DR的重要致病因素。基质金属蛋白酶-2(MMP-2)是一种蛋白水解酶,可以通过调节细胞外基质的产生和降解,然后参与T2DM血管疾病的进展(1)来参与微血管结构的破坏(1)。组织抑制剂1(TIMP-1)是MMP-2的特定INHI BITOR,可以调节MMP-2(2)的生物学活性。此外,β2-微球蛋白(β2-mg)是由血小板,多形核白细胞和淋巴细胞形成的微小蛋白。最近的研究表明,糖尿病性肾病患者的血清β2-mg与微血管病密切相关。高度敏感的C-
我于 2018 年获得新加坡国立大学 (NUS) 化学与生物分子工程系博士学位。在新加坡国立大学,我开发了计算生物学工具、基因组规模模型和组学综合方法来研究和评估乳酸菌 (LAB) 的益生菌能力。后来,我加入了 A*STAR 的分子工程实验室 (MEL) 担任研究员,并将涉及数千种放线菌菌株的基因组组装和天然产物挖掘流程整合到我的工作流程中。作为分子和细胞生物学研究所 (IMCB) 的一员,我还担任数据科学和分析项目 (SIBER) 的首席研究员,参与新加坡的合成生物学目标。我的长期重点仍然是使用以代谢为中心的计算方法来研究人类肠道微生物组和癌症背景下的细胞间相互作用。
摘要 分子对接是药物发现过程的重要步骤,旨在计算一个分子相对于另一个分子相互结合时的首选位置和形状。在这种分析过程中,根据分子的自由度对分子的 3D 表示进行操纵:沿可旋转键的刚性旋转平移和片段旋转。在我们的工作中,我们专注于分子对接过程的一个特定阶段,即分子展开 (MU),它用于通过将分子展开为在目标腔内更易于操纵的展开形状来消除分子的初始偏差。MU 问题的目标是找到最大化分子面积的配置,或者等效地,最大化分子内部原子之间的内部距离。我们提出了一种量子退火方法来解决 MU,将其表述为高阶无约束二元优化,可以在最新的 D-wave 退火硬件(2000Q 和 advantage)上求解。将量子退火器获得的结果和性能与最先进的经典求解器进行了比较。
多药耐药性(MDR)是由细菌的防御机制之一形成的,它是抗菌耐药性的发展,它促使人类不断寻求与这些微生物作斗争的新抗微生物剂。速度和精度对于通过食用受污染的食物或水来识别带有开放系统中人类的菌株的抗性非常重要。The main aim of this study was the molecular characterization of ESBL gene variants ( bla TEM , bla OXA , bla SHV , and bla CTX-M ), integron genes ( int1, int2, and int3 ), and sulphonamide ( sul1, sul2, and sul3 ) resistance genes by PCR from E. coli isolates originated from food and clinical samples.总共使用了17组引物,用于系统发育鉴定,分子检测以及耐药性以及整合性鉴定的表型鉴定的大肠杆菌分离株的特征。从当地市场收集了45种红肉样品,这些样本位于四个(Adıyyaman,Gaziantep,Kahramanmaraş和Hatay)不同的省份中,从不同的省份获得了临床分离株,是从来自来自UTI患者的尿液样本中的UTI样本中获得的,来自sanlıurfaMehmet Akif akif akif的培训和研究医院。在63种食物中使用3个多重PCR应用筛选了三个基因组,并通过分子鉴定发现了33种临床分离株。在食品样品中筛选的3个基因组方面,在BLA SHV基因中的最高速率为44.44%,SUL1基因为69.84%,INT2基因为73.02%。在临床样本中,它被列为15.15%的BLA CTX-M基因,SUL2基因为81.82%,INT1基因为54.55%。在扫描的3个基因组中,在31个分离株中从食物样本中检测到3个或更多基因,包括至少一个基因,来自临床样品中的31个分离株和2个分离株。总体而言,可以说,从大肠杆菌污染的红肉样品和临床样品中分离出的MDR基因的高频提供了有关Türkiye抗生素过度使用的线索。
结构变化的精确识别对于准确的基因型 - 表型相关性很重要。分子细胞遗传学技术,例如荧光原位杂交(FISH)和微阵列CGH,已演变为识别此类基因组重排的强大诊断工具。
使用分光光度计和硅内计算研究制备了源自分散黑色9的两种亚胺化合物HS 1和HS 2。为了制备HS 1和HS 2的化合物,已根据已知方法获得了2,4-和2,5-二羟基苯甲醛化合物,这些化合物已获得含有propargyl基团的化合物。这些化合物已通过1 h(13 c)NMR,质谱,UV-VIS和FTIR的特性。已经在100-1000 mVs -1范围内研究了化合物的电化学性能。这些化合物表明在0.2 V处的不可逆阳极氧化还原过程。化合物的单晶从甲醇溶液中获得,其分子结构已通过X射线方法求解。通过热分析方法对化合物的热行为进行了影响。化合物HS 2的热稳定性高于化合物HS 1。使用Spec-Tropophotomemetric方法将两种化合物均筛选其DNA和BSA结合特性。具有可比结合常数的化合物与DNA的次要凹槽位点结合。最后,通过分子对接研究研究了化合物与DNA和BSA的结合相互作用和模式。
摘要。髓母细胞瘤 (MB) 是最常见的儿童恶性后颅窝肿瘤。最近的遗传、表观遗传和转录组分析将 MB 分为三个亚组,即无翅型 (WNT)、Sonic Hedgehog (SHH) 和非 WNT/非 SHH(最初称为第 3 组和第 4 组),具有不同的患者特征和预后。WNT 是最不常见但预后最好的亚组,其特征是核 β-catenin 表达、Catenin beta-1 (CTNNB1) 突变和 6 号染色体单体性。SHH 肿瘤含有 GLI1、GLI2、SUFU 和 PTCH1 基因的突变和改变,这些基因组成性激活 SHH 通路。最初,TP53 基因改变和/或 MYC 扩增的存在被认为是最可靠的预后因素。然而,最近的分子分析将 SHH MB 细分为几种亚型,这些亚型具有不同的特征,例如年龄、TP53 突变、MYC 扩增、转移的存在、TERT 启动子改变、PTEN 丢失和其他染色体改变以及 SHH 通路相关基因突变。第三个非 WNT/非 SHH MB(组 3/4)亚组在遗传上高度异质性,并显示出几种分子模式,包括 MYC 和 OTX2 扩增、GFI1B 激活、KBTBD4 突变、GFI1 重排、PRDM6 增强子劫持、KDM6A 突变、LCA 组织学、10 号染色体丢失、17q 等染色体、SNCAIP 重复和 CDK6 扩增。然而,基于
a Laboratory of Physiologically Active Organic Compounds, Institute of Chemistry of Additives, Baku 1029, Azerbaijan b Department of Biotechnology, Faculty of Science, Bartin University, Bartin 74100 , Türkiye c Faculty of Arts and Sciences, Department of Chemistry, Gaziantep University, Gaziantep, Türkiye d Department of Gaziantep大学卫生科学研究所,Gaziantep,TürkiyeE系化学工程系,Baku工程大学,Hasan Aliyev Str。120,Baku,Absheron AZ 0101,Azerbaijan F化学系,Sumgait State University,Baku Str。 1,Sumgait AZ5008,阿塞拜疆G系,科学学院,国王沙特大学,利雅得,沙特阿拉伯11362,沙特阿拉伯H化学系,阿塔图尔克大学科学系,Erzurum 25240,Türkiye120,Baku,Absheron AZ 0101,Azerbaijan F化学系,Sumgait State University,Baku Str。1,Sumgait AZ5008,阿塞拜疆G系,科学学院,国王沙特大学,利雅得,沙特阿拉伯11362,沙特阿拉伯H化学系,阿塔图尔克大学科学系,Erzurum 25240,Türkiye