Vishay Siliconix Vishay Electronic GmbH Vishay Intertechnology Asia Pte. Ltd 2585 Junction Avenue, Dr.-Felix-Zandman-Platz 1, 37A Tampines Street 92, #07-01, - - - 美国加利福尼亚州圣何塞 95134 德国塞尔布 D-95100 新加坡,新加坡 528886 电话:+1-408-988-8000 电话:+49-9287-71-0 电话:+65-6788-6668 传真:+1-408-567-8942 传真:+49-9287-70435 传真:+65-6788-0988 - - -
条形码扫描仪光学源:冷的白色照明LED扫描方法:CMOS区域传感器,640 x 480像素扫描速率:最高120 fps触发模式:手动,自动触发角度,阅读音高:360°读取倾斜倾斜:±15°读取倾斜角度:±15°阅读倾斜角度:360°curvature:rupcature:rupcature:rupcature:r c)(r c)。在PCS 0.9:0.2 mm / 7.87 mil min处的分辨率。PCS值:0.2视野:水平74˚,代码39:10-75毫米(0.127 mm) / 0.39-2.95英寸(50万)10-115 mm(0.254 mm) / 0.39-0.39-4.53 IN(10 mil)30-140 mm(0.53代码EAN13:10-150毫米(0.33毫米) / 0.39-5.91英寸(13 mil)code QR代码的景深:0-42毫米(0.169 mm) / 0.59-1.59-1.57 in(6.7米)0-110 mm(6.110 mm(0.381 mm)(0.381 mm) / 0-4.53英里 / 0-4.53 in(15-4.4.53 in(15米)< / div>
条码扫描器光学元件 光源:冷白色照明 LED 扫描方法:CMOS 区域传感器,640 x 480 像素 扫描速率:高达 120 fps 触发模式:手动、自动触发 读取俯仰角:360° 读取倾斜角:± 15° 读取倾斜角:360° 曲率:R ≥ 20 mm (UPC) pcs 0.9 时的最小分辨率:0.2 mm / 7.87 mil 最小。 pcs 值:0.2 视野:水平 74˚,垂直 60˚ 代码 39 的景深:5 - 70 毫米 (0.127 毫米) / 0.19 - 2.76 英寸 (5 mil) 5 - 110 毫米 (0.254 毫米) / 0.19 - 4.33 英寸 (10 mil) 30 - 135 毫米 (0.508 毫米) / 1.18 - 5.31 英寸 (20 mil) 代码 EAN13 的景深:5 - 145 毫米 (0.33 毫米) / 0.19 - 5.71 英寸 (13 mil) 代码 QR 码的景深:0 - 37 毫米 (0.169 毫米) / 0.59 - 1.46 英寸 (6.7 mil) 0 - 105 毫米 (0.381毫米)/0 - 4.13 英寸(15 密耳)
注:1. 数据是通过安装在 1 英寸 2 FR-4 板上(2OZ 铜厚)进行测试的 2. 数据是通过安装在建议的最小 FR-4 板上进行测试的 3. 数据是通过脉冲测试的,脉冲宽度≤300μs,占空比≤2% 4. 由设计保证,不受生产影响
几十年来,人们对 SOI 器件进行了广泛的研究,并将其应用于多种应用:具有厚硅膜(>60nm)的部分耗尽 SOI 器件用于 RF-SOI 应用 [1],而具有薄 SOI 膜(<10nm)的全耗尽 SOI 器件用于 RF、数字和更多 Moore 应用 [2-4]。已知 PD-SOI 器件中会发生浮体 (FB) 效应 [5-6],可以通过体接触消除 [7-8],而 FD-SOI 器件由于具有薄 SOI 膜,因此不受 FB 效应的影响。最近,已经提出了在薄 BOX 上具有相对较薄的薄膜(22nm)的 SOI 器件,以满足 3D 顺序积分的成像器应用要求 [9],其中 SOI 膜掺杂可用于 Vt 居中。本文的目的是确定这种 SOI 器件的操作,并提出相应的 TCAD 描述,考虑 SOI 膜掺杂。
摘要 — 本文介绍了一项关于 28 nm FD-SOI MOSFET 参数提取和分析的分析性实验研究,温度范围从室温到 25 K,栅极长度从微米到纳米。结果表明,FD-SOI 器件随温度变化的行为可以通过深低温条件下已建立的物理理论可靠地描述:玻尔兹曼统计和声子散射机制是决定器件电行为的两个主要因素。此外,我们还展示了 Y 函数作为一种参数提取方法的优势,适用于不同的通道长度和宽的温度范围。我们展示了阈值电压、亚阈值摆幅、低场迁移率和源漏串联电阻对温度的依赖性,以及栅极长度减小如何影响这些特性。
雷达系统确定目标的距离、速度和到达角 (AoA)。本研究的重点是 AoA 确定的准确性。目标反射信号的方位角或 AoA 由相控阵系统中每个接收器链信号之间的相位差决定。接收器链之间的固有相移差异是造成不准确的一个原因。因此,为了准确确定 AoA,必须在接收器电路中控制相位变化。校准相位的模拟解决方案通常使用移相器,但有源移相器耗电,无源移相器有损耗且需要很大的面积 [5]。此外,在这些频率下使用移相器实现小于一度的精度非常复杂 [6]。另一种方法是使用
摘要 — 物联网 (IoT) 对象的使用日益增多,因此有必要开发低功耗安全电路。轻量级加密 (LWC) 算法用于在有限的功耗下保护这些连接对象的通信。能量收集技术可以提供物联网对象所需的电力。但是,它可能遭受突然断电,导致系统微控制器停止运行。为了使加密原语能够从意外断电中快速恢复,我们提出了一种基于 CMOS/MRAM 的 A SCON 密码硬件实现,该密码是美国国家标准与技术研究所 (NIST) LWC 竞赛的决赛入围者。我们专注于从 MTJ 电气模型开始的 ASIC 设计流程,而无需重新开发现有的 EDA 工具。作为研究案例,A SCON 计算的中间状态可以存储在非易失性存储器中,并在断电后启动时恢复,从而节省重新计算算法第一步的能源成本。此实现可节省 11% 至 48% 的能源,面积开销为 5.5%。索引术语 —A SCON、LWC、STT-MRAM、MTJ、非挥发性