请注意!本文件仅供参考,本文提供的任何信息在任何情况下均不视为对我们产品的任何功能、条件和/或质量或任何特定用途适用性的保证、担保或描述。关于我们产品的技术规格,我们恳请您参考我们提供的相关产品数据表。我们的客户及其技术部门需要评估我们的产品是否适合预期用途。
江苏杰杰微电子(又名 JJM)的汽车级 MOSFET 提供 -100V 至 650V 的击穿电压 V DS_Max。栅极源阈值电压 V GS(th) 为高电平(2.7 ~ 3.5V)或低电平(1.5 ~ 1.9V,-1.0 ~ -3.0V)。源极漏极导通电阻 R DS(ON) 低至 0.56mΩ(@ V GS = 10V)。FOM 低至 55。这些 MOSFET 通常组装在高效功率封装中,要么是小型表面贴装型,要么是传统通孔型。这些包括但不限于以下具有优异热特性的封装:PDFN3x3-8L、PDFN5x6-8L/-D、PowerJE®10x12(兼容TOLL)、PowerJE®7x8(兼容sTOLL)、TO-247-3/7L等。所有器件均按照AEC理事会和JEDEC定义的相关标准进行了长期可靠性和质量测试。
常州银河世纪微电子有限公司(GME)保留对本文中任何产品信息(版权所有)进行更正、修改、改进或其他更改的权利,恕不另行通知。GME 不承担因本文所述任何产品的应用或使用而产生的任何责任;也不转让其专利权或他人权利下的任何许可。
长州银河系世纪微电子(GME)保留进行更改的权利,而无需进一步通知此处的任何产品信息(版权所有),以进行校正,修改,改进或其他更改。gme不承担针对本文所述的任何产品的应用或使用而产生的任何责任;它既不能在其专利权下传达任何许可,也不传达他人的权利。
并取得了令人瞩目的成果[7−11]。为了最大限度地减少β-Ga2O3 MOSFET的SHE,已经提出了一些建设性的方法[12,13],例如离子切割技术[14]、转移到异质衬底[15,16]和结构设计[17]。新的测量方法已经被用来表征β-Ga2O3 MOSFET的瞬态温度分布[18]。关于β-Ga2O3基MOSFET的大部分报道都集中在追求高PFOM和探索新的结构,然而实际应用中需要大面积结构来维持高的通态电流。对于大面积结构,由于表面积与体积比较小,SHE会比小器件更严重,值得研究。制备高性能大面积β-Ga2O3晶体管的主要挑战是材料生长的不均匀性和工艺流程的不稳定。有报道称,多指β-Ga2O3 MOSFET能够提供300 V的开关瞬变,电压斜率高达65 V/ns [19],显示出巨大的潜力。尽管如此,电
马克西米利安 W. Feil1,2,Maximilian W. Feil1,2,Maximilian W. Feil1,2,Maximilian W. Feil1,2,Maximilian W. Feil1,2,A ∗,Katja Waschneck1,B,B,B,Hans Reisinger1,C,C. ER1,C,Paul Salmen1,D,Gerald Rescher3,E,Thomas Aichinger3,F,∗,Katja Waschneck1,B,Hans Reisinger1,C,Paul Salmen1,D,Gerald Rescher3 3,F,∗,Katja Waschneck1,B,Hans Reisinger1,C,Paul Salmen1,D,Gerald Rescher3,E,Thomas Aichinger3,F,F,∗,Ka tja Waschneck1,B,B,Hans Reisinger1,C,C,C,D,D,Gerald,Gerald,Gerald,aiching b.1 Salmen1,D,Gerald Rescher3,E,Thomas Aichinger3,F,∗,Katja Waschneck1,B,Hans Reisinger1,C,Paul Salmen1,D,Gerald Rescher3,E,E,E,Thomas Aichinger3,F,F,F,Thomas aichinger3,F,F,f,katja reisinger,salmen,salmen,salmen,thom thom thom 3, A Waschneck1,B,Hans Reisinger1,C,Paul Salmen1,D,Gerald Rescher3,E,Thomas Aichinger3,F,
摘要 与硅基绝缘栅双极晶体管 (IGBT) 相比,碳化硅 (SiC) 金属氧化物半导体场效应晶体管 (MOSFET) 具有更高的工作温度、开关速度和开关频率的特点,被认为是未来电驱动的下一个进化步骤。SiC MOSFET 在电动汽车领域的应用带来了许多好处,例如更高的效率、更高的功率密度和简化的冷却系统,并且可以看作是大功率快速电池充电的推动者。本文回顾了 SiC MOSFET 在不同电动汽车 (EV) 应用场景中的优势,包括牵引逆变器、车载转换器和非车载充电应用。然而,用 SiC MOSFET 取代 Si-IGBT 带来了一些新的技术挑战,例如更强的电磁干扰 (EMI)、可靠性问题、由于高瞬态电压导致的潜在电机绝缘故障以及冷却困难。与成熟的硅基半导体技术相比,这些挑战迄今为止阻碍了 SiC MOSFET 在汽车应用中的广泛采用。为了充分利用 SiC MOSFET 在汽车应用中的优势并提高其可靠性,本文探讨了 SiC MOSFET 模块封装和驱动器设计的未来技术发展,以及具有更高开关频率的新型电机驱动策略和优化的高频机器设计。
昏暗。分钟。 nom。 最大 0.90 1.00 1.10 B 6.25 E1 5.60 5.70。分钟。nom。最大0.90 1.00 1.10 B 6.25 E1 5.60 5.70。0.90 1.00 1.10 B 6.25 E1 5.60 5.70。
Daniel J. Lichtenwalner1,A*,Sei-hyung Ryu1,B,Brett Hull1,C,Scott Allen1,D和John W. Palmour1,E Aaniel J. Lichtenwalner1,A*,Sei-Hyung Ryu1,B,B,BRETT HULL1,BRETT HULL1,C SCOTT HULL1,C,C,C,C,SCOTT ALLEN1,D. U1,B,Brett Hull1,C,Scott Allen1,D和John W. Palmour1,E Daniel J. Lichtenwalner1,A*,Sei-Hyung Ryu1,B,Brett Hull1,C,Scott Hull1,C,Scott Allen1,d和John W. John W. Palmour1,E Daniel J. Lichtenwalner1,A*,Sei-Hyung Ryu1,B,Brett Hull1,C,Scott Allen1,D和John W. Palmour1,E Daniel J. Lichtenwalner1,A* Sei-Hyung Ryu1,B,Brett Hull1,C,Scott Allen1,d,以及 John W. Palmour1,e Daniel J. Lichtenwalner1,a*,Sei-Hyung Ryu1,b,Brett Hull1,c,Scott Ryu1,b、Brett Hull1,c、Scott Allen1,d 和 John W. Palmour1,e Daniel J. Lichtenwalner1,a*、Sei-Hyung Ryu1,b、Brett Hull1,c、Scott Allen1,d 和 John W. Palmour1,e Daniel J. Lichtenwalner1,a*、Sei-Hyung Ryu1,b、Brett Hull1,c、Scott Allen1,d 和 John W. Palmour1,e Daniel J. Lichtenwalner1,a*、Sei-Hyung Ryu1,b、Brett Hull1,c、Scott Allen1,d 和 John W. Palmour1,e Daniel J. Lichtenwalner1,a*、Sei-Hyung Ryu1,b、Brett Hull1,c、Scott Allen1,d 和 John W. Palmour1,e Daniel J. Lichtenwalner1,A*,Sei-hyung Ryu1,B,Brett Hull1,C,Scott Allen1,D和John W. Palmour1,E Daniel J. Lichtenwalner1,A*,Sei-Hyung Ryu1,B,B,B,Brett Hull1,C,Brett Hull1,C,Scott Hull ,Brett Hull1,C,Scott Allen1,D和John W. Palmour1,E Daniel J. Lichtenwalner1,A*,Sei-Hyung Ryu1,B,Brett Hull1,C,Scott Allen1,D,D,D。 Our1,E Daniel J. Lichtenwalner1,A*,Sei-Hyung Ryu1,B,Brett Hull1,C,Scott Allen1,D和约翰·W·帕尔默1,e