摘要:氮化镓高电子迁移率晶体管 (GaN HEMT) 是实现高效紧凑电力电子系统的关键技术。在电源转换器的设计阶段,对 GaN HEMT 进行正确的建模对于充分利用其优良特性和解决当前技术的局限性至关重要。学术界和工业界长期以来一直在深入研究功率 MOSFET 的电路模型。这些模型能够模拟数据表信息,它们通常由设备制造商以网络表的形式提供,可以在任何类型的 SPICE 类软件中模拟。本文首先强调了 MOSFET 和 GaN HEMT 在数据表层面的相似之处和不同之处。根据这一分析,讨论了可用于 GaN HEMT 建模的 MOSFET 电路模型的特征。这项任务是通过概述 MOSFET 电路模型的文献以及分析制造商网络表来完成的,从而突出了有效或适用于 GaN HEMT 的 MOSFET 模型。研究表明,一些模型可以适用于 GaN HEMT 器件,以模拟室温下的静态特性,而动态特性的 MOSFET 模型可用于 GaN HEMT 器件。这项研究使器件建模者能够通过使用一些成熟的 MOSFET 模型来加快 GaN HEMT 建模速度。从这个角度来看,还提供了开发精确的 GaN HEMT 模型的一些建议。
碳化硅 (SiC) 功率 MOSFET 的优势使得该技术在太空、航空电子和高能加速器应用方面具有吸引力。然而,当前的商业技术仍然容易受到单粒子效应 (SEE) 和辐射环境引起的潜在损伤的影响。在暴露于重离子的商用 SiC 功率 MOSFET 中,实验观察到两种类型的潜在损伤。一种是在略低于退化开始的偏置电压下观察到的,它涉及栅极氧化物。另一种损伤类型是在低于单粒子烧毁 (SEB) 极限的偏置电压下观察到的,它归因于 SiC 晶格的改变。聚焦离子束 (FIB) 和扫描电子显微镜 (SEM) 用于研究损伤部位。最后,总结了重离子在 SiC MOSFET 中引起的不同类型的损伤,这些损伤与离子 LET 和操作偏置有关。
图 7 显示了 (A) 磷扩散和 (B) 无退火顺序掺杂的 (1) 横截面 TEM 图像和 (2) EDX 磷映射图像。在磷扩散以及退火顺序掺杂(未显示)中,硅变成多晶(图 7(A-1)),其中多晶粒加剧了干蚀刻变化。另一方面,对于无退火顺序掺杂(图 7(B-1)),硅保持非晶态,这改善了干蚀刻变化。EDX 的结果使硅差异与磷原子位置的差异相一致(图 7(A-2) 和图 7(B-2))。从干蚀刻工艺变化的角度来看,对于硅场板电极而言,无活化退火顺序掺杂更胜一筹。
Vishay Siliconix Vishay Electronic GmbH Vishay Intertechnology Asia Pte. Ltd 2585 Junction Avenue, Dr.-Felix-Zandman-Platz 1, 37A Tampines Street 92, #07-01, - - - 美国加利福尼亚州圣何塞 95134 德国塞尔布 D-95100 新加坡,新加坡 528886 电话:+1-408-988-8000 电话:+49-9287-71-0 电话:+65-6788-6668 传真:+1-408-567-8942 传真:+49-9287-70435 传真:+65-6788-0988 - - -
摘要 — 过去十年,碳化硅 (SiC) 功率金属氧化物半导体场效应晶体管 (MOSFET) 的商业化不断扩大。栅极氧化物可靠性是 SiC 功率 MOSFET 的主要问题,因为它决定了器件的使用寿命。在这项工作中,我们研究了商用 1.2 kV SiC 功率 MOSFET 在不同栅极电压下的栅极漏电流。高氧化物电场引发的碰撞电离和/或阳极空穴注入 (AHI) 导致空穴捕获,从而增强了栅极漏电流并降低了器件的阈值电压。由于 Fowler-Nordheim (FN) 隧穿而产生的电子注入和捕获往往会降低栅极漏电流并增加阈值电压。还对商用 MOSFET 进行了恒压时间相关电介质击穿 (TDDB) 测量。栅极漏电流的结果表明,场加速因子的变化是由于高栅极氧化物场下栅极电流/空穴捕获增强所致。因此,建议在低栅极电压下进行 TDDB 测量,以避免在正常工作栅极电压下高估寿命。
微电子芯片是现代电子设备的核心,也用于汽车用于例如驾驶员协助,安全系统,动力总成控制,通信和信息娱乐系统。金属氧化物 - 氧化型晶体管(MOSFET)是这些数字和模拟综合电路(ICS)中的主要晶体管(MOSFET)。MOSFET充当电流的开关或放大器,通过利用场效应。必须在设备的整个生命周期中保证可靠的行为,尤其是针对安全至关重要的应用。设备的可靠性挑战随着小型化的增加,电路内的应力场增加以及新的创新材料而增加。最突出的机制降低了设备性能,因此严重影响可靠性是偏置温度不稳定性(BTI),并取决于温度和施加的栅极偏置。阈值电压偏移是由位于氧化物中的界面状态和结构缺陷的充电和排放引起的。在过去的几年中,已经取得了重大进展来确定BTI背后的物理降解机制。但是,物理模型在计算上对于电路模拟而言太昂贵了。因此,在实际应用条件下,仍需要迫切需要在实际应用条件下进行偏置温度不稳定性的精确模型,以评估设备行为,直到其寿命结束为止。
摘要 – 本文详细分析了特定类型的碳化硅 (SiC) 功率 MOSFET 的短路故障机制,该 MOSFET 具有安全的开路故障类型特征。结果基于广泛的实验测试,包括晶体管的功能和结构特性,专门设计用于实现逐渐退化和逐渐累积的损伤。结果表明,软故障特征与栅极源结构的退化和最终部分短路有关。此外,在退化的组件上观察到由临时离线偏置引起的部分恢复。结果表明,这是一种现实的新选择,可在应用中部署,以提高系统级稳健性和系统级跳转运行模式能力,这在许多可靠性关键领域(例如运输)中非常重要。
摘要。在这项工作中,我们通过实验研究了电应力对 T = 2 K 温度下 p 型硅 MOSFET 内单空穴传输特性可调谐性的影响。这是通过监测通道氧化物界面处三个无序量子点的库仑阻塞来实现的,众所周知,由于它们的随机起源,这些量子点缺乏可调谐性。我们的研究结果表明,当施加 -4 V 至 -4.6 V 之间的栅极偏压时,附近的电荷捕获会增强库仑阻塞,从而导致更强的量子点限制,在执行热循环重置后可以恢复到初始设备状态。然后重新施加应力会引起可预测的响应,量子点充电特性会发生可重复的变化,并且会观察到高达 ≈ 50% 的持续充电能量增加。我们在栅极偏压高于 -4.6 V 时达到了阈值,由于大规模陷阱生成导致设备性能下降,性能和稳定性会降低。结果不仅表明应力是增强和重置充电特性的有效技术,而且还提供了有关如何利用标准工业硅器件进行单电荷传输应用的见解。
摘要在这项工作中,我们在t = 2 k的温度下实验研究了电应力对P型硅MOSFET中单孔传输性能的可调性的影响。这是通过从三个基于疾病的量子量表中的频道 - 氧化物界面上的三个基于疾病的量子点监测的库仑块来实现的,这些氧化通道界面缺乏可调性,这些点缺乏可调节性,因为这些点缺乏其稳定性。我们的发现表明,当在-4 V和-4.6 V之间施加栅极偏置时,附近的电荷捕获会增强库仑阻滞,从而导致更强的量子点限制,在执行热周期后,可以将其逆转为初始设备状况。重新施加应力产生了可预测的响应量子点充电特性的可再现变化,并且观察到一致的充电能量增加到≈50%。我们达到了-4.6 V的门偏置上方的阈值,由于设备降解作为大规模陷阱的产物,因此性能和稳定性降低。结果不仅将压力作为一种有效的技术来增强和重置充电性能,而且还提供了有关如何利用标准工业硅设备用于单一电荷运输应用的洞察力。
摘要 - 在室温和市售大区域1.2 kV 4H-SIC功率MOSFET的室温和升高的温度下,进行了频率泄漏电流和恒定电压时间与时间依赖时间的介电分解(TDDB)测量值,以研究其门氧化物的可靠性并更好地了解其失败模式。表明,Fowler-Nordheim(F-N)隧穿电流是导致门泄漏电流的主要机制。尽管界面状态密度(d)和接近氧化物陷阱可能引起的异常门泄漏电流行为,但在正常工作条件下的泄漏电流(在28℃下为V g = 20 V)小于100 pa。从TDDB测量值推断出来,当V g = 20 V时,在28℃和175°C时的预测寿命远远超过目标10年。索引术语 - 碳化物(SIC),MOSFET,氧化物可靠性,Folwer-Nordheim,TDDB,故障时间
