MoSi 2 是一种导电材料,广泛应用于高温环境。本文介绍了通过陶瓷注射成型 (CIM) 生产含 MoSi 2 的电阻加热元件。烧结部件由嵌入玻璃化长石和 Al 2 O 3 基质中的 MoSi 2 颗粒组成。通过改变导电相的含量可以精确调整烧结部件的导电性。为了开发注塑原料,评估了四种粘合剂系统。相应的原料在传统模具以及增材制造的可溶模具中注塑成不同的几何形状。对于每种原料,都根据热重测量制定了脱脂和烧结程序。脱脂温度越高,MoSi 2 氧化越多,样品导电性越差。因此,烧结部件的导电性以及密度用于评估原料的适用性。最后,辉光试验证明 MoSi 2 /Al 2 O 3 /长石复合材料部件可用作加热元件,并且通过将红外测温数据与计算模拟相结合,可以可靠地获得热导率、电导率和热容量等重要的材料数据。
摘要。使用Magnetron-ION溅射,将一层金属钼1–2μm厚的金属钼沉积在环境温度下惰性氩气的大气中,该硅通过Czochralski方法生长的硅单晶表面。根据实验的结果,纯Mo层厚度为2μm,通过磁控蛋白的反应性溅射从高度纯的金属钼靶中沉积到冷硅晶片底物上,厚度为1.5 mm。仅在严格定义的钼金属沉积速率对应于体积中给定的巨质压力的情况下,它们的电导率和透明度也很高。溅射目标是直径为40 mm的磁盘,厚度为3-4 mm。产品处理的技术周期包括目标清洁的阶段。在不添加氧气的情况下将金属MO靶标溅射在纯氩AR中,可以促进具有非常好的电导率的不透明金属膜的形成。X射线衍射分析具有Mo金属涂层表面的硅单晶体显示了Moleybdenum-Silicon系统中的MO3SI和MOSI.65的化合物。硅硅硅酸盐被发现在温度范围1850÷1900°C的温度范围内经历同类肌转化,而低温品种 -MOSI2具有四方结构。 -MOSI2的高温形式具有六边形结构。使用原子扫描显微镜进行研究的结果表明,硅原子的链与MO原子连接,形成沿平行X和Y轴的MO结构的棱镜形成的锯齿形。
金属间化合物是一类特殊的金属材料,其特性使其可以在传统金属材料失效的条件下使用;这些条件包括高温、腐蚀性环境以及极端的磨蚀和粘合应力。许多金属间化合物表现出非常好的物理和机械性能,特别是非常好的热稳定性、高熔点、良好的耐腐蚀性和低密度,这使它们成为高温应用的合适候选材料。然而,这些材料的延展性有限,脆性较高,尤其是在低温下,这阻碍了它们的广泛应用。基于中间化合物的材料的用途非常广泛,但始终有必要从物理或机械性能的角度考虑特定材料的选择。它们被用作建筑材料、形状记忆材料(NiTi)、电阻炉加热元件(MoSi2)、磁性合金(Ni3Fe)、储氢材料(Mg2Ni、LaNi5)或高温材料(TiAl、NiAl),或用于强氧化环境(FeAl)。
