关于血液的一切������������������������������������������������������������������������������������������������������������������������������������������������7 什么是血液? ��������������������������������������������������������������������������������������������������������������������������������������������������������7 血液在哪里制造?又是如何制造的? ����������������������������������������������������������������������������������������������������������������������������8 关于 MPN 的所有信息 ������������������������������������������������������������������������������������������������������������������������������������������������������������11 MPN 是如何发展的? ������������������������������������������������������������������������������������������������������������������������������������������������������������������������11 MPN 是癌症吗? ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������13 MPN 的原因 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������13 MPN 的类型 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������14 MPN 的症状 ��������������������������������������������������������������������������������������������������������������������������������������������������20 如何诊断 MPN? ��������������������������������������������������������������������������������������������������������������������������������������������21
目标: 确定 MPN 患者的最佳治疗方法。 分析目前对分子反应的了解,将其作为临床意义的终点(如 MPN 中的总体生存率、无白血病生存率、无血栓生存率)的替代终点。 讨论 MPN 干细胞或造血干细胞微环境的潜在脆弱性,可以利用这些脆弱性进一步优化 MPN 治疗。
通过制药公司的资金支持这种教育资源,我们的支持者可以在MPN-Hub.com上找到。所有内容均由SES与教师合作独立开发。资助者不得对此资源的内容影响。
脊髓增生性肿瘤(MDS/MPN)具有中性粒细胞,以前称为非典型慢性髓样白血病(ACML),构成了BCR-ABL-ABL-1负MDS/MPN的疾病实体,该实体是根据新的第5届世界卫生组织(Who Who Who)分类的。它的特征是一种重叠综合征,它结合了骨髓增生性和骨髓增生性疾病的特征,并具有很高的倾向于发展为急性髓样白血病(AML)和整体不利的预后。我们报告了一名72岁女性的案例,该女性被转诊到我们的医院,以进一步研究贫血,血小板细胞增多症和白细胞增多症,并被诊断出患有中性粒细胞增多的MDS/MPN。骨髓形态在所有三个谱系中表现出具有dys塑料特征的高细胞骨髓。我们的案例报告和文献综述为中性粒细胞增多的MDS/MPN的形态特征的动态提供了宝贵的见解。马来西亚医学与健康科学杂志(2024)20(SUPP11):134-137。 doi:10.47836/mjmhs20.s11.29马来西亚医学与健康科学杂志(2024)20(SUPP11):134-137。 doi:10.47836/mjmhs20.s11.29
钙网蛋白 ( CALR ) 突变是 JAK2 野生型 (WT) 骨髓增生性肿瘤 (MPN)(包括原发性血小板增多症和骨髓纤维化)的主要致癌驱动因素,其中突变型 (MUT) CALR 越来越多地被认为是合适的突变特异性药物靶点。然而,我们目前对其作用机制的理解来自于小鼠模型或永生化细胞系,其中跨物种差异、异位过表达和缺乏疾病渗透性阻碍了转化研究。在这里,我们描述了第一个人类基因工程模型 CALR MUT MPN,使用 CRISPR/Cas9 和腺相关病毒载体介导的敲入策略在原代人类造血干细胞和祖细胞 (HSPC) 中建立可重复和可追踪的体外和异种移植小鼠表型。我们的人源化模型重现了许多疾病特征:不依赖血小板生成素的巨核细胞生成、髓系谱系偏斜、脾肿大、骨髓纤维化和巨核细胞引发的 CD41 + 祖细胞扩增。令人惊讶的是,引入 CALR 突变会强制人类 HSPC 进行早期重编程并诱导内质网应激反应。观察到的分子伴侣补偿性上调揭示了新的突变特异性脆弱性,CALR 突变细胞对 BiP 分子伴侣和蛋白酶体的抑制具有优先敏感性。总体而言,我们的人源化模型改进了纯鼠模型,并为在人类环境中测试新型治疗策略提供了现成的基础。
不要害怕要求人们在您的状况下进行自我教育。您可以通过本指南来获取支持网络,并鼓励他们访问MPN语音网站,以了解有关MPN的更多信息。有些人发现有能力分享他们所学的信息并充当朋友和家人的“老师”。MPN罕见且复杂,即使是关心我们的人,也会因医疗保健专业人员使用的医学条款和缩写词而感到困惑。为此,您可以在第14页的词汇表中参考常见术语。您可能想建议他们与您一起参加可用的支持小组,例如MPN语音患者论坛,在那里他们可以与支持亲人的其他人见面并分享经验 - 请在MPN语音网站上查看即将到来的论坛。否则,参加您所在地区的临床护士专家主导的支持小组(如果有)可能会有所帮助。
摘要论文解决了费城阴性脊髓增生性肿瘤(MPNS),这是一组克隆造血性干细胞疾病,涵盖了多余性膜病(PV),必不可少的血栓性血症(ET),ET),骨髓纤维纤维症(MF)和MPN(MPN)(MPN)(MPN)(MPN)(MPN)(MPN)。这些疾病以JAK2,CALR和MPL中的体细胞突变为特征,涉及诊断挑战,血管并发症的可变风险以及多样化的生存结果。本论文中提出的研究旨在增强对与MPN相关的治疗结果,生存和血管并发症的理解。第一项研究检查了IL28B(IFNL3)中的遗传变异及其对α-α治疗结果的影响,证明了遗传标记物预测治疗功效的潜力。第二和第三研究,基于瑞典MPN注册中心的数据,研究了PV,ET和MF患者的生存模式和血管并发症。这些发现强调了血管事件的预后意义和细胞减少疗法的保护作用。第四项研究评估了MPN-U患者的异质性,解决了诊断挑战及其对分类和临床管理的影响,同时记录了生存模式和血栓并发症的发生率。
摘要除了长时间的重新布线外,大脑中的突触还会受到在更快的时间表上发生的显着调制,这些时间尺度赋予了大脑的其他处理信息。尽管如此,大脑的模型像复发性神经网络(RNN)经常在训练后冻结了权重,依靠在神经元活动中存储的内部状态来保存与任务相关的信息。在这项工作中,我们研究了仅依赖于推理过程中突触调制的网络的计算潜力和产生的动力学,即过程与任务相关信息,多塑性性网络(MPN)。由于MPN没有复发连接,因此这使我们能够仅由突触调制量研究计算能力和动态行为。MPN的一般性允许我们的结果适用于从短期突触可塑性(STSP)到较慢的调制,例如Spike Time依赖性可塑性(STDP)等较慢。我们彻底检查了经过基于集成任务的MPN的神经种群动力学,并将其与已知的RNN动力学进行了比较,发现两者具有根本不同的吸引子结构。我们发现动态上的上述差异使MPN在几个与神经科学的测试上的表现都优于其RNN对应物。在一系列神经科学任务中训练MPN,我们发现其在这种设置中的计算功能与通过复发连接计算的网络相当。总的来说,我们认为这项工作证明了通过突触调制的计算可能性,并突出了这些计算的重要基线,以便可以在类似大脑的系统中识别它们。