例如,MPS的动力蛋白和动力蛋白沿微管移动,而肌球蛋白家族可以沿丝状肌动蛋白移动。他们的运动依赖载荷依赖于9,10,并且可以达到的最大速度受到可用的ATP浓度。11 ATP水解对化学势的局部耗散驱动MPS脱离平衡。他们的运动方向取决于可以行走的局部前后不对称性不对称性。在最小的尺度上生成非平衡驱动,MP构成了一类活动物质12-14,其中时间反转对称性和平衡波动 - 降解关系被打破。在活细胞中,MP共同运输包括细胞器在内的各种货物。15–19从几个到数百名国会议员可以参与这种运输。20–25多个MP驱动的货物动力学的理论研究使用相等的载荷共享近似值或有限数量的MPS的详细数值模拟。26–33 MPS之间的耦合可能来自直接的机械连接,如肌球蛋白丝中,34分子拥挤26–33 MPS之间的耦合可能来自直接的机械连接,如肌球蛋白丝中,34分子拥挤
为了进一步支持我们的国会议员IIIA计划的制定,我们最近建立了一个国会议员IIIA护理人员领导委员会,以提高我们对MPS IIIA社区需求和关注的理解,并为我们的研究和指导计划的决策提供信息。理事会将每年大约开会两到三次,理事会在6月首次开会。我们的团队简要介绍了MPS IIIA计划的状态,该计划概述了2024年3月的虚拟市政厅共享的信息(下面引用)。理事会成员在获得诊断过程中发现有关MPS IIIA的全面信息的挑战,一旦确认诊断。他们讨论了他们咨询的各种资源,以了解MPS IIIA,研究和临床试验的最新信息。对话还强调了家庭最感兴趣的信息差距和主题。我们计划今年秋天再次将理事会召集在一起。
微塑料(MP)是富含碳的聚合物,在环境中无处不在。随着塑料产生的增加,微塑性污染可能会加剧,并导致微生物群落和生物地球化学过程(例如碳循环)发生重大变化,最终影响陆地生态系统中的温室气体排放和碳储存。然而,目前对MPS对土壤碳循环作用的影响仍然有限,并且缺乏对以前研究获得的分散信息的系统评价。因此,本综述提供了有关国会议员对土壤碳循环影响的当前知识的系统概述,并提供了未来的研究建议。新兴的证据表明,MP可以通过修饰土壤物理化学和微生物学特性来影响土壤碳稳定性以及CO 2和CH 4的排放;尽管可生物降解的MP通常比不可降解的MP具有更大的作用,但特定效应高度依赖于塑料类型,大小和浓度。MPS对土壤碳周期的影响的具体机制仍然难以捉摸,这主要从微生物变化的角度进行了讨论,包括微生物生物量,微生物群落群落以及与碳代谢相关的关键酶和功能基因。需要进一步的研究以阐明MPS是否对土壤碳分解以及所涉及的生物和非生物机制具有正启动作用。本评论论文帮助研究人员更清楚地了解了MPS如何以及如何影响土壤生态系统中的碳循环。
与非跨性切除术和健康的个体相比,在进行脾切除术的Thalassexymia患者中,循环MPS的水平显着升高,并且这些MPS中的大多数来自血小板和红细胞。10,11 Thalassexymia MPS的蛋白质组学分析表明,它们含有高水平的活性氧,热休克蛋白和其他伴侣蛋白,这可能促进thalassemia患者观察到的TEE过程。12我们还发现,Thalassexymia MPS对血小板激活和白细胞 - 血压 - 骨骼聚集的促凝作用。13最近,Kheansaard等。 通过增强促凝介质,炎症细胞因子以及内皮粘附分子的表达,证实了来自脾脏的患者的MPS诱导内皮细胞激活和随后的内皮单位细胞粘附。 14然而,尚未记录通过暴露于MP的上调的其他内皮促炎标记。 我们认为,对某些促炎基因(包括IL1B,IL6,CXCL8,CD40和CCL2)以及其细胞因子的更详细研究可能会提供一些重要的线索,以了解来自β-硫代硫0-甲状腺肿/HBE患者在寄生虫细胞上的潜在MPS的潜在作用。 因此,此处报道的研究的基本原理。13最近,Kheansaard等。通过增强促凝介质,炎症细胞因子以及内皮粘附分子的表达,证实了来自脾脏的患者的MPS诱导内皮细胞激活和随后的内皮单位细胞粘附。14然而,尚未记录通过暴露于MP的上调的其他内皮促炎标记。我们认为,对某些促炎基因(包括IL1B,IL6,CXCL8,CD40和CCL2)以及其细胞因子的更详细研究可能会提供一些重要的线索,以了解来自β-硫代硫0-甲状腺肿/HBE患者在寄生虫细胞上的潜在MPS的潜在作用。因此,此处报道的研究的基本原理。
有机材料(例如树皮和生物炭)可以是治疗雨水的有效过滤材料。但是,这种过滤器在保留微塑料(MPS)(一种新兴的雨水污染物)中的效率尚未得到充分研究。这项研究研究了通常与雨水相关的MP的去除和运输。将不同的MP类型(聚酰胺,聚乙烯,聚丙烯和聚苯乙烯)混合到25、50和100 cm长的水平树皮和生物炭过滤器的最初2 cm材料中。MP类型由25-900μm的球形和碎片形状组成。过滤器的水流为5 mL/min,持续一周,并通过μFTIR成像分析了MPS的总废料。为了获得更深入的见解,将一个100 cm的树皮过滤器副本分为10 cm段,并提取并计数每个段中的MPS。结果表明,在所有生物炭和树皮过滤器中,MP有效保留了> 97%。但是,无论滤波长度如何,在所有废水中都检测到MP。流出浓度分别在树皮和生物炭废水中测量5 - 750 MP/L和35-355 MP/L,> 91%的MP计数由小型(25μm)聚酰胺球形颗粒组成。将所有数据结合起来,使用更长的过滤器发现了平均MP浓度的降低,这可能归因于25和50 cm滤波器中的引导。树皮介质中MPS的ALYSES显示,大多数MP都保留在0-10 cm段中,但有些MPS进一步运输,其中19%的聚酰胺保留在80 - 90 cm段中。总体而言,这项研究表明,树皮和生物炭过滤器保留国会议员的有希望的结果,同时强调了系统堆积过滤器以减少污染雨水对环境的MP排放的重要性。
─ 1000 rivers ( WWTP input) account 80% GLOBAL plastic into ocean ─ GLOBAL input .0.8-2.7 Millions Tonnes/year size <0.5 cm (Lebre3ton) ─ EUROPEAN input, 1.656 -4.997 Tonnes/year (RIMMEL paper) size > 2.5 cm,Turkey,Italy,UK ─ River plastic transport by extreeme flood x 100 (non-flood) ─ WWTPS,1.4 x 10 15项目/年进水10-26g/l,未经处理的3.8x10 16个/年的水,─-下水道溢出(CSO),即。River Tame, (UK) > 200 MPs items/day, 70 MPs/year ─ Landfills leachate , size 20-5000µm, 10-290 MP MPs items/liter ─ EU WFD and MSFD for 2030:reduce 50% plastic litter into sea and 30% MPs into the environment + Monitoring of litter, plastics and MPs ─ First papers published plastics in ocean, Science ,1972, MPB 1973年,
估计每年有2.58亿吨塑料进入土壤。连接持续类型的微型塑料(MP),对可生物降解的塑料的需求将增加。仍然有许多关于塑料污染的未知数,并且一个很大的差距是从国会议员释放的溶解有机物(DOM)的命运和组成以及它们与农业系统中土壤微生物的相互作用方式。在这项研究中,将聚乙烯MPS,在不同程度上进行照片,并在不同水平的不同水平的农业土壤中添加了牙乳酸MP,并孵育100天以解决该知识差距。我们发现,添加MP后,降解低芳香性的不稳定成分,导致芳香和氧化程度增加,分子多样性降低,并改变了土壤DOM的氮和硫含量。terephathate,乙酸,草酸盐和L-乳酸在多乙烯MPS释放的DOM释放的DOM中,是由聚乙烯MPS释放的DOM和硝酸盐的,是土壤微生物组的主要分子。MPS释放的DOM代谢的细菌主要集中在蛋白质细菌,静脉杆菌和杆菌中,而真菌主要集中在Ascomycota和Basidiomycota中。我们的研究提供了对MPS释放的DOM的微生物转化及其在农业土壤中DOM进化的影响的深入了解。
运动蛋白(MP)是真核细胞中cy骨骼的组成部分[1-3]。它们参与了亚细胞过程中的广泛功能,例如货物的细胞内转运,细胞骨架动力学,应力产生和细胞运动。他们水解ATP以经过附着的结局,并沿着附着状态的共轭纤维进行分解运动[4-8]。例如,MPS的动力蛋白和动力蛋白沿微管移动,而MPS的肌球蛋白家族可以沿纤维肌动蛋白移动。他们的运动取决于载荷[9,10],并且他们可以达到的最大ve-受到可用的ATP浓度[11]。ATP水解对化学物质的局部耗散驱动MPS脱离平衡。他们的运动方向取决于可以行走的局部前后不对称性。在最小的尺度上生成非平衡驱动,MP构成了一类活动物质[12-14],其中时间反转对称性和平衡闪烁 - 耗散关系被损坏。在活细胞中,MP共同运输包括细胞器在内的各种货物[15-19]。从几个到数百个国会议员可以参与这种运输[20-25]。多个MP驱动的货物动力学的理论研究使用相等的负载共享近似值或有限数量的MPS的详细数值模拟[26-33]。弹性耦合MPS显示应变诱导的解开和停滞[37 - 39]。除了进行细胞内反式 -MPS之间的耦合可能是由直接的机械连接产生的,如肌球蛋白纤维[34],分子拥挤效应[35,36]或与货物的结合,尚未完全了解其可能的影响。用于弱构层,有效的解开速率和平均货物载体恢复到单运动行为的非相互作用限制。
关于 MPS 基础物理科学研究是 MPS 支持工作的核心主题。MPS 科学的核心领域(天文科学、化学、材料研究、数学科学和物理学)继续推进和转化知识,并支持下一代科学家的发展。MPS 资助的科学涵盖范围广泛:从研究过的最小物体和最短时间尺度到宇宙大小和年龄的距离和时间尺度。MPS 继续培养和支持跨学科科学项目,这些项目的范围和复杂性各不相同,从个人研究人员奖励到大型多用户设施。个人研究人员和小团队获得大多数奖项,但中心、研究所和设施都是 MPS 资助研究不可或缺的一部分。这种学科融合和组织研究人员的各种方式使 MPS 能够投资于引人注目的基础科学,这些科学将支撑和推动未来技术的进步,并帮助支持未来几十年强劲的美国经济。通过其中心和研究所计划,MPS 将继续支持前沿科学和从事从基础科学到转化科学的研究的下一代科学家的发展。MPS 中心和研究所涵盖范围广泛,从解决基础数学挑战到开发新材料。研究工具和基础设施是 MPS 将继续资助的关键重点。天文科学、化学、材料研究和物理学领域的中型研究基础设施对于这些学科的发展仍然至关重要。大型研究基础设施也至关重要,并为与国际组织、其他联邦机构和私人基金会建立伙伴关系提供了机会,阿塔卡马大型毫米/亚毫米阵列 (ALMA)、双子座天文台、大型强子对撞机 (LHC) 和国家高磁场实验室等设施就是明证。大型强子对撞机 (LHC) 的升级工程于 2020 年 4 月开始建设,旨在为 NSF 资助的 LHC 探测器做好粒子加速器高亮度运行的准备,而 Vera C. Rubin 天文台项目正在推进智利塞罗帕琼峰顶的物理基础设施以及最先进的数据管理系统和有史以来建造的最大数码相机。丹尼尔 K. 井上太阳望远镜 (DKIST) 位于夏威夷毛伊岛的哈莱阿卡拉山顶,预计于 2021 年底完工,有望成为世界上最强大的太阳天文台。DKIST 在 2020 财年实现了一个关键里程碑,首次看到太阳光芒,以有史以来最高的分辨率拍摄到太阳表面的壮观图像。自 1990 年以来,它探测到引力波