† 机器人研究所 (https://www.ri.cmu.edu/),* 同等贡献者 [1] 美国国家航空航天局,空间技术任务理事会。空间技术研究资助计划,月球表面技术研究机会附录,2021 年。[2] Y. Rubner、L. Guibas 和 C. Tomasi,“地球移动者的距离、多维缩放和基于颜色的图像检索”,斯坦福,加利福尼亚州,1997 年 {jharring、ryanlee、apletta、rqwong、byounes、red}@cs.cmu.edu
Vidarbha青年福利协会,Amravati教授Ram Meghe技术与研究所教授(A+(A+(自治研究所),全印度技术教育委员会认可,新德里是由孟买的MAHARASHTRA State,Mumbai隶属于Sant Gadge Baba Amrravati University Maharashtra State,Amraba Amrravati University,Amrravati。Vidarbha青年福利协会,Amravati教授Ram Meghe技术与研究所教授(A+(A+(自治研究所),全印度技术教育委员会认可,新德里是由孟买的MAHARASHTRA State,Mumbai隶属于Sant Gadge Baba Amrravati University Maharashtra State,Amraba Amrravati University,Amrravati。
在这里,我们提出了一种用于全面PAM表征的新型细胞分析,该测定忠实地报告了人类细胞中不同DCAS蛋白的PAM要求。These assays enable accurate detection of greatly expanded PAM profiles for our lead dCas effectors (dCasONYX, dCasRUBY, dCas- TOPAZ), enabling the efficient targeting of disease-causing genes.These assays enable ongoing engineering and character- ization of our novel dCas in relevant genomic contexts to facili- tate their translation to therapeutics.总的来说,我们介绍了在我们的宝石表观遗传编辑平台的核心优化紧凑和精确的CAS分子的工作,并证明了它们广泛的效用,这是治疗患者中棘手疾病的主要进步。
背景:已提出合成计算机断层扫描(SCT),并越来越多地采用以实现基于磁共振成像(MRI)的放射疗法。深度学习(DL)最近证明了从固定MRI采集中生成准确的SCT的能力。但是,由于模型概括不良,MRI方案可能会随着时间的推移而随着时间的流逝而变化或不同。目的:研究域随机化(DR)以增加脑SCT生成DL模型的概括。方法:收集了95例接受RT患者的CT和相应的T 1加权MRI,带有 /无对比度,T 2加权和FLAIR MRI,考虑到可以研究概括的未见序列的能力。“基线”生成对抗网络进行了 /没有天赋序列的训练,以测试模型在没有DR的情况下的性能。基于SCT的剂量计划的图像相似性和准确性对CT进行了评估,以选择针对基线的表现最佳的DR方法。结果:基线模型在FLAIR上的性能最差,平均绝对误差(MAE)= 106±20.7 HU(平均值±σ)。在MAE = 99.0±14.9 HU的DR模型中,Flair上的性能显着提高,但仍然不如基线 + Flair模型的性能(MAE = 72.6±10.1 HU)。同样,对于DR VS基线,获得了γ速率的提高。结论:DR提高了仅在获得的MRI上训练的未见序列上的图像相似性和剂量准确性。DR使模型更加稳健,从而减少了在未见序列上应用模型时重新训练的需求,并且无法进行重新训练。
1.Afia Abdi β-arrestin 偏向神经降压素受体 1 调节剂对多巴胺受体 D2 β-arrestin 的影响 招募顾问:Lauren Slosky 赞助计划:LSSURP 所在机构:明尼苏达大学,双子城 摘要:由于精神兴奋剂使用障碍对公共健康的影响不断升级,开发有效的药物疗法仍然是一个关键的未满足需求。神经降压素受体 1 (NTSR1) 是一种 G 蛋白偶联受体 (GPCR),在调节大脑中的多巴胺能信号通路方面不可或缺,使其成为这些疾病的有希望的治疗靶点。作为 GPCR,NTSR1 介导与 G 蛋白和 β-arrestin 的相互作用。针对 NTSR1 的平衡肽激动剂已在临床前成瘾模型中显示出潜在功效。尽管如此,它们在临床应用方面的进展受到诸如低血压、体温过低和运动障碍等不利靶向效应的阻碍。因此,我们最近开发了 β-arrestin 偏向的 NTSR1 配体,例如化合物 SBI-553,它选择性地减弱与甲基苯丙胺和可卡因诱导的运动活动相关的精神兴奋剂相关行为。尽管有这些有希望的发现,但其作用的潜在机制仍未完全了解。该项目旨在确定 NTSR1 共表达和激活对 D2 受体信号传导的影响,以阐明 SBI-553 消除靶向副作用的机制。利用 HEK293T 细胞、磷酸钙转染和生物发光共振能量转移 (BRET) 检测,我们希望帮助确定 SBI-553 最大限度减少不良反应的分子机制。这项研究可以为开发更有效、更安全的精神兴奋剂使用障碍药物疗法铺平道路。
1 DO 权限仅限于微小更改。有关 DO 权限范围,请参阅 RA 5850 – 军事设计批准组织 (MRP 第 21 部分 J 子部分)。2 如果航空系统不是英国国防部所有,则需要在赞助商批准的模型内商定由 TAA 或 TAM 承担的 TAw 管理监管责任;请参阅 RA 1162 – 民用(开发)和(在役)航空系统的航空安全治理安排,或请参阅 RA 1163 – 特殊飞行航空系统的航空安全治理安排。根据商定的 TAw 职责授权,可在本 RA 中酌情用 TAM 代替 TAA。3 ►请参阅 RA 1225 – 航空安全文件审计跟踪。◄ 4 请参阅 MMAC 第 3 章 – 类型设计变更(MRP 第 21 部分子部分 D)。
摘要- 谱形式因子 (SFF) 表征能量特征值的统计,是多体量子混沌的关键诊断。此外,可以定义部分谱形式因子 (pSFF),它们指的是多体系统的子系统。它们为多体系统的能量本征态统计提供了独特的见解。我们提出了一种协议,允许在随机测量框架内测量量子多体自旋模型中的 SFF 和 pSFF。我们的协议提供了一个统一的测试平台,用于探测封闭量子系统中的多体量子混沌行为、热化和多体定位。此外,我们介绍了该协议在采用局部随机旋转和测量的捕获离子量子模拟器上的实现。
联合战争研究中心 (CENJOWS) 与印度军事评论 (IMR) 于 2023 年 12 月 8 日合作举办了一场关于“军事电力系统”的会议。此次活动在新德里的 Manekshaw 中心举行。会议的杰出小组成员包括三军的高级服役人员、国防研究与发展组织 (DRDO) 的代表和行业代表。研讨会为业界提供了一个与武装部队互动的环境,以了解他们的电力系统要求并获取有关其标准的信息,以便他们在蓬勃发展的同时模仿他们的专业知识。会议还向听众介绍了业界和国防研究与发展组织 (DRDO) 以及各军种下的设计局在电力系统领域取得的技术进步以及他们所解决的局限性。研讨会分为四个环节进行。
由于带注释的样本稀缺,病理性脑损伤在图像数据中的复杂表现对监督检测方法提出了挑战。为了克服这个困难,我们将重点转移到无监督异常检测。在这项工作中,我们专门使用健康数据训练所提出的模型,以识别测试期间未见的异常。这项研究需要调查基于三元组的变分自动编码器,以同时学习健康脑数据的分布和去噪能力。重要的是,我们纠正了先前基于投影的方法中固有的一个误解,该误解依赖于这样的假设:图像内的健康区域在重建输出中将保持不变。这无意中暗示了病变图像和无病变图像在潜在空间表示上存在相当大的相似性。然而,这种假设可能并不成立,特别是由于病变区域强度对投影过程的潜在重大影响,特别是对于具有单一信息瓶颈的自动编码器。为了克服这个限制,我们将度量学习与潜在采样分离。这种方法确保病变和无病变输入图像都投影到相同的分布中,特别是无病变投影。此外,我们引入了一个语义引导的门控交叉跳过模块来增强空间细节检索,同时抑制异常,利用解码器更深层中存在的健壮健康大脑表示语义。我们还发现,将结构相似性指数测量作为额外的训练目标可以增强所提模型的异常检测能力。
用于磁共振成像 (MRI) 的单图像超分辨率 (SISR) 重建引起了人们的极大兴趣,因为它不仅可以加快成像速度,还可以改善可用图像数据的定量处理和分析。生成对抗网络 (GAN) 已被证明在图像恢复任务中表现良好。在这项工作中,我们遵循 GAN 框架并开发了一个与鉴别器相结合的生成器来解决 T1 脑 MRI 图像上的 3D SISR 任务。我们开发了一种新颖的 3D 内存高效的残差密集块生成器 (MRDG),其在 SSIM(结构相似性)、PSNR(峰值信噪比)和 NRMSE(归一化均方根误差)指标方面实现了最先进的性能。我们还设计了一个金字塔池化鉴别器 (PPD) 来同时恢复不同尺寸尺度上的细节。最后,我们引入了模型混合,这是一种简单且计算效率高的方法,可以平衡图像和纹理
