最近,扩散模型 (DM) 已应用于磁共振成像 (MRI) 超分辨率 (SR) 重建,并表现出令人印象深刻的性能,尤其是在细节重建方面。然而,当前基于 DM 的 SR 重建方法仍然面临以下问题:(1)它们需要大量迭代来重建最终图像,效率低下且消耗大量计算资源。(2)这些方法重建的结果通常与真实的高分辨率图像不一致,导致重建的 MRI 图像出现明显失真。为了解决上述问题,我们提出了一种用于多对比 MRI SR 的有效扩散模型,称为 DiffMSR。具体而言,我们在高度紧凑的低维潜在空间中应用 DM 来生成具有高频细节信息的先验知识。高度紧凑的潜在空间确保 DM 只需要几次简单的迭代即可产生准确的先验知识。此外,我们设计了 Prior-Guide Large Window Transformer (PLWformer) 作为 DM 的解码器,它可以扩展感受野,同时充分利用 DM 产生的先验知识,以确保重建的 MR 图像保持不失真。在公共和临床数据集上进行的大量实验表明,我们的 DiffMSR 1 优于最先进的方法。
Vidarbha青年福利协会,Amravati教授Ram Meghe技术与研究所教授(A+(A+(自治研究所),全印度技术教育委员会认可,新德里是由孟买的MAHARASHTRA State,Mumbai隶属于Sant Gadge Baba Amrravati University Maharashtra State,Amraba Amrravati University,Amrravati。Vidarbha青年福利协会,Amravati教授Ram Meghe技术与研究所教授(A+(A+(自治研究所),全印度技术教育委员会认可,新德里是由孟买的MAHARASHTRA State,Mumbai隶属于Sant Gadge Baba Amrravati University Maharashtra State,Amraba Amrravati University,Amrravati。
自LMRL研讨会上一次在Neurips 2022(https://www.lmrl.org/)举行,对生物学的代表性学习兴趣已经激起了新的想法,并引发了传统方法,并引发了如何通过机器学习来最佳地捕捉生物系统复杂性的讨论。大规模公共DNA和RNA测序,蛋白质序列和3D结构,质谱和细胞绘画数据集(跳跃CP,RXRX3,人类细胞图集)的可用性促进了许多大型“基础模型”的生物学模型(Rozenblatt-ordos-poss-ord。2021; Fay等。2023; Chandrasekaran等。2023)。这些模型旨在从嘈杂,原始和非结构化的高维数据中提取“有意义的”表示,以解决各种生物学问题。
颅骨插曲是重要的第一步。基于学习的细分模型(例如U-NET模型)在自动执行此细分任务时显示出令人鼓舞的结果。但是,当涉及到新生儿MRI数据时,在培训这些模型期间,没有任何可公开可用的大脑MRI数据集随着手动注释的segmentment口罩而被用作标签。大脑MR图像的手动分割是耗时,劳动力密集的,需要专业知识。此外,由于成人数据和新生儿数据之间的较大域移动,使用对成人脑MR图像进行训练的分割模型进行分割新生脑图像无效。因此,需要对新生儿大脑MRI的更有效,准确的颅骨剥离方法。在本文中,我们提出了一种无监督的方法,以适应经过成人MRI训练的U-NET颅骨剥离模型,以有效地在新生儿上工作。我们的资产证明了我们新颖的未加剧方法在提高分割准确性方面的有效性。我们提出的方法达到了总体骰子系数为0。916±0。032(平均值±STD),我们的消融研究巩固了我们提议的有效性。非常重要的是,我们的模型的性能与我们进行了综合的当前最新监督模型非常接近。所有代码均可在以下网址提供:https://github.com/abbasomidi77/daunet。这些发现表明,这种方法是一种有价值,更容易,更快的工具,用于支持医疗保健专业人员,以检查新生大脑的先生。
化学性侵犯转移性结直肠癌(MCRC)的患者预后不佳。使用程序性细胞死亡蛋白1(PD-1)/程序性细胞死亡配体1(PD-L1)抑制剂的应用鼓励改善MCRC微卫星不稳定性高(MSI-H)/不匹配修复维修剂(DMMR)的生存。不幸的是,对于MCRC而言,微卫星稳定(MSS)/优先不匹配修复(PMMR)无效,占MCRC的95%。放射疗法可以通过直接杀死肿瘤细胞并诱导阳性免疫活性来促进局部控制,这可能有助于协同进行免疫疗法。我们介绍了一名先进的MSS/PMMR MCRC患者,该患者在第一线化学疗法,姑息手术和二线化学疗法结合靶向疗法后患有进行性疾病(PD)。然后,患者接受了PD-1抑制剂的疗法,结合了放射疗法和粒细胞 - 巨噬细胞刺激因子(GM-CSF)。根据实体瘤版本1.1(recist1.1)的反应评估标准,该患者在三年后与无进展生存期(PFS)的三重疗法后显示了完全反应(CR),迄今为止已有2年以上的时间。患者除疲劳(1级)外没有其他明显的不良反应。三合一疗法为转移性化学难治性MSS/PMMR MCRC患者提供了有希望的策略。
DBIC - 第 1A 阶段概述:以下指南基于 EHS 为实验室和研究机构提供的信息,旨在帮助确定和实施经批准的工作区域和设备 COVID-19 消毒方法。根据 CDC 指南,达特茅斯脑成像中心 (DBIC) 的研究人员至少应在扫描仪套件中每次扫描开始和结束时执行消毒方案,但不少于每两小时一次。扫描套件内所需的清洁和消毒是研究人员的责任,应按照 CDC 建议执行,如下所述。工作班次期间可能被多人接触的设备和表面必须每两小时消毒一次。高接触位置和设备:以下是 DBIC 中需要消毒的、处理和接触频率高的位置和设备。 o 台面、扫描仪控制台 o 门把手、橱柜把手 o 扫描仪龙门架上的扫描仪台控件 o 内部和外部线圈、电缆、按钮盒、紧急挤压球 o 幻影 o 灯开关和面板 o 电话、计算机键盘和计算机鼠标 o 控制台区域和受试者等候区的椅子扶手 o 更衣室的门把手、灯开关和抽屉 o 钢笔、记号笔、铅笔、订书机、胶带分配器 o 复印机控件 o 清洁产品容器 o 系统开/关按钮 o MRI 对讲系统 o MRI 套件的门铃 批准的消毒剂: DBIC 将提供经 EPA 认证可有效对抗 COVID-19 冠状病毒的消毒剂。 Terry Sackett 和 Courtney Rogers 将负责验证消毒剂是否在 EPA 注册清单上。
“作为全球生态转型的领军企业,威立雅将把世界领先的技术带到堪培拉,使这座材料回收设施成为澳大利亚最先进的设施之一,并生产出用于回收和资源再利用的最高纯度材料,”威立雅首席执行官埃斯特尔·布拉赫利诺夫(Estelle Brachlianoff)表示。“该项目是我们‘绿色升级’战略的一部分,旨在加大对澳大利亚的投资,澳大利亚是威立雅的重点区域。目前,这一势头已经非常强劲:在‘绿色升级’的第一年,威立雅澳大利亚的营收就增长了7.7%。这座全新的、最先进的材料回收设施将提高当地的回收能力,通过在堪培拉本地对回收物品进行分类来减少运输排放,并为澳大利亚首都领地日益增长的循环经济提供更多就业机会。”
MRI超级分辨率(SR)和Denoising任务是深度学习领域的挑战,传统上被视为具有分隔的配对培训数据的不同任务。在本文中,我们提出了一种创新的方法,该方法使用单个深度学习模型同时解决这两个任务,从而消除了在培训期间对明确配对嘈杂和干净的图像的需求。我们提出的模型主要是针对SR训练的,但在超级分辨图像中也表现出显着的噪声清洁功能。而不是将与频率相关操作引入常规过程的常规方法,我们的新方法涉及使用以频率信息歧视器为指导的GAN模型。为了实现这一目标,我们利用3D离散小波变换(DWT)操作的功率作为GAN框架内的频率结合,用于磁共振成像(MRI)数据的SR任务。特别是我们的分配包括:1)基于残差 - 残基连接块的3D发电机; 2)将3D DWT与1×1卷积的3D DWT集成到3D UNET内的DWT+CORV单元中; 3)训练有素的模型用于高质量的图像SR,并伴随着Intrinsic denoising过程。我们将模型“ deno诱导的超分辨率gan(disgan)”配音,原因是其对SR图像产生和同时降解的双重影响。与传统的培训SR和Deno Task作为单独模型的传统方法背道而驰,我们提出的disgan仅受到SR任务的培训,但在DeNoising方面也取得了出色的表现。我们的代码可用 -该模型经过了来自人类连接组项目(HCP)的数十个受试者的3D MRI数据的培训,并对先前看不见的MRI数据进行了进一步评估,这些MRI数据来自患有脑肿瘤和癫痫的受试者,以评估其denosis和SR性能。