fMRI的多功能或同时多层采集序列在过去十年中变得流行,部分原因是在大规模研究中采取的方法的影响,例如人类Connectome Project。但是,将这种高度加速的高分辨率序列应用于较小规模的项目可能存在明显的缺点,这在信号与噪声比,可靠性和实验能力方面存在很大的缺点。尤其是,使用较小的体素,较短的重复时间和高水平的多次加速度可能会对信号对噪声,图像伪像和腹侧脑区域的信号脱落产生强烈的负面影响。多功能序列可以是有价值的工具,尤其是对于专业应用程序,但应明智地应用于较小规模的研究,重点关注特定项目的端点,并在适当的测试和试点工作之后。
定量脊髓(SC)磁共振成像(MRI)充满挑战,其中缺乏标准化成像方案。在这里,我们提出了一项前瞻性统一的定量MRI协议,我们将其称为脊柱通用协议,用于三个主要的3T MRI供应商:GE,Philips和Siemens。该协议提供了评估SC宏结构和微观结构完整性的有价值的指标:用于SC横截面区域(CSA)计算的T1加权和T2加权成像,用于灰质CSA的多回波梯度回声,以及用于评估白色物质微量结构的磁化化转移和扩散加权成像。脊柱通用方案用于在260名健康受试者的42个中心中获取数据,如伴侣论文[Ref-Data]中所述。脊柱通用协议是开放式访问,其最新版本可以在以下网址找到:https://spinalcordmri.org/protocols。该协议将成为实施新的SC成像计划的研究人员和临床医生的宝贵起点。
由于带注释的样本稀缺,病理性脑损伤在图像数据中的复杂表现对监督检测方法提出了挑战。为了克服这个困难,我们将重点转移到无监督异常检测。在这项工作中,我们专门使用健康数据训练所提出的模型,以识别测试期间未见的异常。这项研究需要调查基于三元组的变分自动编码器,以同时学习健康脑数据的分布和去噪能力。重要的是,我们纠正了先前基于投影的方法中固有的一个误解,该误解依赖于这样的假设:图像内的健康区域在重建输出中将保持不变。这无意中暗示了病变图像和无病变图像在潜在空间表示上存在相当大的相似性。然而,这种假设可能并不成立,特别是由于病变区域强度对投影过程的潜在重大影响,特别是对于具有单一信息瓶颈的自动编码器。为了克服这个限制,我们将度量学习与潜在采样分离。这种方法确保病变和无病变输入图像都投影到相同的分布中,特别是无病变投影。此外,我们引入了一个语义引导的门控交叉跳过模块来增强空间细节检索,同时抑制异常,利用解码器更深层中存在的健壮健康大脑表示语义。我们还发现,将结构相似性指数测量作为额外的训练目标可以增强所提模型的异常检测能力。
最近,几种方法探索了多对比磁共振成像(MRI)超分辨率(SR)的潜力,并获得了优于单对比SR方法的结果。但是,现有方法仍然存在两个缺点:(1)它们只能解决固定的Inter Intermpling量表,例如2×,3×和4倍,它们需要培训并存储临床上每个UPSMPLAING SCALE的相应模型。(2)他们在采用方形窗口(例如8×8)变形金刚网络档案时缺乏直接交互,这导致长范围依赖性的建模不足。此外,参考图像和目标图像之间的关系尚未完全挖掘。为了解决这些问题,我们开发了一个新颖的网络,用于多对比度MRI任意规模的SR,被称为McASSR。具体来说,我们设计了矩形窗口交叉注意变压器,以在MR图像中建立长期依赖性,而无需增加计算复杂性并完全使用参考信息。此外,我们提出了参考吸引的隐式关注,作为提升的模式,通过隐式神经表示实现了任意规模的超分辨率,进一步融合了参考图像的补充信息。在公共和临床数据集上进行了广泛而全面的实验表明,我们的MCASSR比SOTA方法产生了卓越的性能,这表明其在临床实践中的巨大潜力。代码将在https://github.com/guangyuankk/mcassr上找到。
开放式成像研究(OASIS)是一个旨在使大脑的磁共振成像(MRI)数据集的大脑数据集,可自由使用科学界。通过编译和自由分发MRI数据集,我们希望促进基本和临床神经科学中的未来发现。具体来说,OASIS项目旨在扮演许多角色。首先,绿洲图像和相关措施是持续科学探索的数据集。从整个成人寿命中从有或没有痴呆症的400多个个人获得的一组图像开始,选择了绿洲数据集,以鼓励对高兴趣主题进行研究,并提供对个别实验室难以获取的数据。第二,OASIS数据是研究人员创建和推动分析技术的目标。由于图像是从多个年龄和健康状况的受试者中获取的,因此绿洲数据可用于测试人类大脑各种景观各个范围内技术的鲁棒性和有效性。第三,绿洲数据可以用作相似分析技术的基准目标。标准图像证明了证明和对比方法的共同参考点。通过仔细筛选
大规模脑成像数据集的一个主要目标是提供用于研究异质弹出的资源。从这些数据集中为各个受试者提供功能性脑网络的表征将具有预测认知或临床特征的巨大潜力。我们第一次提出了一种技术,即概率的功能模式(sprofumo),该技术可扩展到英国生物库(UKB),有预期的100,000名参与者,并且在个人和人群中层次估算了层次的功能性脑网络,同时对两种信息之间的双向流量进行了影响。使用仿真,我们显示了模型的效用,尤其是在涉及显着的跨主题可变性的情况下,或者需要在网络之间划定细粒度的差异。随后,通过将模型应用于4999名UKB受试者的静止状态fMRI,我们将静止状态网络(RSN)绘制为单个受试者,其详细范围比以前在UKB(> 100 rsns)中可能绘制了,并证明这些RSN可以预测somecorimotor andsocorimotor and somecorimotor and Emperife and Elighe colesions and Level Consoge。此外,我们证明了该模型的几个优点,而不是独立的组件分析与双重回归(ICA-DR)相结合,尤其是在估计RSN的空间配置和认知性状的预测能力方面。所提出的模型和结果可以为将来从大数据中对个性化的脑功能纤维进行调查打开新的门。
这是一个棘手的问题,因为我们以不同的方式感到和体验事物。一些有MRI扫描的孩子说这很有趣,因为您可以看镜子并见到父母。当您躺下并且床开始上升时,这也可能会令人兴奋。其他孩子说,一开始可能会有些恐惧,但是当您在扫描仪中时,感觉还不错,而且很放松。大多数孩子说,躺在床上和听音乐是最好的部分!当您在上方看时,就像看着白屏一样,它使您入睡。,如果您想摆脱扫描,可以按一下蜂鸣器,医生将停止扫描。
MRI超级分辨率(SR)和Denoising任务是深度学习领域的挑战,传统上被视为具有分隔的配对培训数据的不同任务。在本文中,我们提出了一种创新的方法,该方法使用单个深度学习模型同时解决这两个任务,从而消除了在培训期间对明确配对嘈杂和干净的图像的需求。我们提出的模型主要是针对SR训练的,但在超级分辨图像中也表现出显着的噪声清洁功能。而不是将与频率相关操作引入常规过程的常规方法,我们的新方法涉及使用以频率信息歧视器为指导的GAN模型。为了实现这一目标,我们利用3D离散小波变换(DWT)操作的功率作为GAN框架内的频率结合,用于磁共振成像(MRI)数据的SR任务。特别是我们的分配包括:1)基于残差 - 残基连接块的3D发电机; 2)将3D DWT与1×1卷积的3D DWT集成到3D UNET内的DWT+CORV单元中; 3)训练有素的模型用于高质量的图像SR,并伴随着Intrinsic denoising过程。我们将模型“ deno诱导的超分辨率gan(disgan)”配音,原因是其对SR图像产生和同时降解的双重影响。与传统的培训SR和Deno Task作为单独模型的传统方法背道而驰,我们提出的disgan仅受到SR任务的培训,但在DeNoising方面也取得了出色的表现。我们的代码可用 -该模型经过了来自人类连接组项目(HCP)的数十个受试者的3D MRI数据的培训,并对先前看不见的MRI数据进行了进一步评估,这些MRI数据来自患有脑肿瘤和癫痫的受试者,以评估其denosis和SR性能。
在这项研究中,我们将概述近年来我们所做的有关语言和语音生产的神经解剖学相关性的实验工作。首先,我们将介绍与事件相关的功能磁神经成像和我们使用的实验范式的方法。然后,我们将介绍并讨论有关(1)语音运动控制,(2)发音复杂性,(3)韵律的神经解剖学相关性的实验结果,以及(4)义大利处理的神经认知底物。实验(1)和(2)表明,由SMA,运动皮层和小脑组成的预期大型运动语音网络仅在计划和执行简单的关节运动方面活跃。提高的关节复杂性会导致更集中的激活。此外,我们可以证明,只有语音运动的执行才能招募左前岛,而发音计划则没有。实验结果(3)的结果表明,控制韵律处理的横向化不是韵律(语言与情感)的功能,而是处理单元的更一般特征,例如韵律框架的大小,造成了不同皮质区域的激活。最后,在实验(4)中,我们提出了语音生产中句法处理的第一个结果。除了预期的Broca区域激活外,我们还发现了Wernicke地区和小脑中的激活。我们还找到了其他皮质区域激活的证据,这些证据少于脑力相关性的临床研究。这些领域和网络的认知相关性仍有待阐明。Q 2001 Elsevier Science Ltd.保留所有权利。Q 2001 Elsevier Science Ltd.保留所有权利。