由于带注释的样本稀缺,病理性脑损伤在图像数据中的复杂表现对监督检测方法提出了挑战。为了克服这个困难,我们将重点转移到无监督异常检测。在这项工作中,我们专门使用健康数据训练所提出的模型,以识别测试期间未见的异常。这项研究需要调查基于三元组的变分自动编码器,以同时学习健康脑数据的分布和去噪能力。重要的是,我们纠正了先前基于投影的方法中固有的一个误解,该误解依赖于这样的假设:图像内的健康区域在重建输出中将保持不变。这无意中暗示了病变图像和无病变图像在潜在空间表示上存在相当大的相似性。然而,这种假设可能并不成立,特别是由于病变区域强度对投影过程的潜在重大影响,特别是对于具有单一信息瓶颈的自动编码器。为了克服这个限制,我们将度量学习与潜在采样分离。这种方法确保病变和无病变输入图像都投影到相同的分布中,特别是无病变投影。此外,我们引入了一个语义引导的门控交叉跳过模块来增强空间细节检索,同时抑制异常,利用解码器更深层中存在的健壮健康大脑表示语义。我们还发现,将结构相似性指数测量作为额外的训练目标可以增强所提模型的异常检测能力。
用于磁共振成像 (MRI) 的单图像超分辨率 (SISR) 重建引起了人们的极大兴趣,因为它不仅可以加快成像速度,还可以改善可用图像数据的定量处理和分析。生成对抗网络 (GAN) 已被证明在图像恢复任务中表现良好。在这项工作中,我们遵循 GAN 框架并开发了一个与鉴别器相结合的生成器来解决 T1 脑 MRI 图像上的 3D SISR 任务。我们开发了一种新颖的 3D 内存高效的残差密集块生成器 (MRDG),其在 SSIM(结构相似性)、PSNR(峰值信噪比)和 NRMSE(归一化均方根误差)指标方面实现了最先进的性能。我们还设计了一个金字塔池化鉴别器 (PPD) 来同时恢复不同尺寸尺度上的细节。最后,我们引入了模型混合,这是一种简单且计算效率高的方法,可以平衡图像和纹理
摘要 — 对于病理病例和在不同中心获取的图像(而不是训练图像),用于医学图像分割的深度学习模型可能会意外且严重地失败,其标记错误违反了专家知识。此类错误破坏了用于医学图像分割的深度学习模型的可信度。检测和纠正此类故障的机制对于安全地将这项技术转化为临床应用至关重要,并且很可能成为未来人工智能 (AI) 法规的要求。在这项工作中,我们提出了一个值得信赖的 AI 理论框架和一个实用系统,该系统可以使用基于 Dempster-Shafer 理论的回退方法和故障安全机制来增强任何骨干 AI 系统。我们的方法依赖于可操作的可信 AI 定义。我们的方法会自动丢弃由骨干 AI 预测的违反专家知识的体素级标记,并依赖于这些体素的回退。我们在最大的已报告胎儿 MRI 注释数据集上证明了所提出的可信 AI 方法的有效性,该数据集由来自 13 个中心的 540 个手动注释的胎儿大脑 3D T2w MRI 组成。我们值得信赖的 AI 方法提高了四个骨干 AI 模型的稳健性,这些模型适用于在不同中心获取的胎儿脑部 MRI 以及患有各种脑部异常的胎儿。我们的代码可在此处公开获取。
DBIC - 第 1A 阶段概述:以下指南基于 EHS 为实验室和研究机构提供的信息,旨在帮助确定和实施经批准的工作区域和设备 COVID-19 消毒方法。根据 CDC 指南,达特茅斯脑成像中心 (DBIC) 的研究人员至少应在扫描仪套件中每次扫描开始和结束时执行消毒方案,但不少于每两小时一次。扫描套件内所需的清洁和消毒是研究人员的责任,应按照 CDC 建议执行,如下所述。工作班次期间可能被多人接触的设备和表面必须每两小时消毒一次。高接触位置和设备:以下是 DBIC 中需要消毒的、处理和接触频率高的位置和设备。 o 台面、扫描仪控制台 o 门把手、橱柜把手 o 扫描仪龙门架上的扫描仪台控件 o 内部和外部线圈、电缆、按钮盒、紧急挤压球 o 幻影 o 灯开关和面板 o 电话、计算机键盘和计算机鼠标 o 控制台区域和受试者等候区的椅子扶手 o 更衣室的门把手、灯开关和抽屉 o 钢笔、记号笔、铅笔、订书机、胶带分配器 o 复印机控件 o 清洁产品容器 o 系统开/关按钮 o MRI 对讲系统 o MRI 套件的门铃 批准的消毒剂: DBIC 将提供经 EPA 认证可有效对抗 COVID-19 冠状病毒的消毒剂。 Terry Sackett 和 Courtney Rogers 将负责验证消毒剂是否在 EPA 注册清单上。
颅骨插曲是重要的第一步。基于学习的细分模型(例如U-NET模型)在自动执行此细分任务时显示出令人鼓舞的结果。但是,当涉及到新生儿MRI数据时,在培训这些模型期间,没有任何可公开可用的大脑MRI数据集随着手动注释的segmentment口罩而被用作标签。大脑MR图像的手动分割是耗时,劳动力密集的,需要专业知识。此外,由于成人数据和新生儿数据之间的较大域移动,使用对成人脑MR图像进行训练的分割模型进行分割新生脑图像无效。因此,需要对新生儿大脑MRI的更有效,准确的颅骨剥离方法。在本文中,我们提出了一种无监督的方法,以适应经过成人MRI训练的U-NET颅骨剥离模型,以有效地在新生儿上工作。我们的资产证明了我们新颖的未加剧方法在提高分割准确性方面的有效性。我们提出的方法达到了总体骰子系数为0。916±0。032(平均值±STD),我们的消融研究巩固了我们提议的有效性。非常重要的是,我们的模型的性能与我们进行了综合的当前最新监督模型非常接近。所有代码均可在以下网址提供:https://github.com/abbasomidi77/daunet。这些发现表明,这种方法是一种有价值,更容易,更快的工具,用于支持医疗保健专业人员,以检查新生大脑的先生。
fMRI的多功能或同时多层采集序列在过去十年中变得流行,部分原因是在大规模研究中采取的方法的影响,例如人类Connectome Project。但是,将这种高度加速的高分辨率序列应用于较小规模的项目可能存在明显的缺点,这在信号与噪声比,可靠性和实验能力方面存在很大的缺点。尤其是,使用较小的体素,较短的重复时间和高水平的多次加速度可能会对信号对噪声,图像伪像和腹侧脑区域的信号脱落产生强烈的负面影响。多功能序列可以是有价值的工具,尤其是对于专业应用程序,但应明智地应用于较小规模的研究,重点关注特定项目的端点,并在适当的测试和试点工作之后。
这是一个棘手的问题,因为我们以不同的方式感到和体验事物。一些有MRI扫描的孩子说这很有趣,因为您可以看镜子并见到父母。当您躺下并且床开始上升时,这也可能会令人兴奋。其他孩子说,一开始可能会有些恐惧,但是当您在扫描仪中时,感觉还不错,而且很放松。大多数孩子说,躺在床上和听音乐是最好的部分!当您在上方看时,就像看着白屏一样,它使您入睡。,如果您想摆脱扫描,可以按一下蜂鸣器,医生将停止扫描。
大规模脑成像数据集的一个主要目标是提供用于研究异质弹出的资源。从这些数据集中为各个受试者提供功能性脑网络的表征将具有预测认知或临床特征的巨大潜力。我们第一次提出了一种技术,即概率的功能模式(sprofumo),该技术可扩展到英国生物库(UKB),有预期的100,000名参与者,并且在个人和人群中层次估算了层次的功能性脑网络,同时对两种信息之间的双向流量进行了影响。使用仿真,我们显示了模型的效用,尤其是在涉及显着的跨主题可变性的情况下,或者需要在网络之间划定细粒度的差异。随后,通过将模型应用于4999名UKB受试者的静止状态fMRI,我们将静止状态网络(RSN)绘制为单个受试者,其详细范围比以前在UKB(> 100 rsns)中可能绘制了,并证明这些RSN可以预测somecorimotor andsocorimotor and somecorimotor and Emperife and Elighe colesions and Level Consoge。此外,我们证明了该模型的几个优点,而不是独立的组件分析与双重回归(ICA-DR)相结合,尤其是在估计RSN的空间配置和认知性状的预测能力方面。所提出的模型和结果可以为将来从大数据中对个性化的脑功能纤维进行调查打开新的门。