Greg Heiges 于 2018 年加入 YA 集团。Greg 在建筑行业拥有近 25 年的经验,曾担任美国一些最大的学术医疗中心和私人商业开发商的建筑师、业主代表和施工经理。他参与了项目开发的各个方面;从授权和施工前到最终入住。Greg 主要在人口密集的城市工地工作,职业生涯的大部分时间都在管理钢架高层建筑。他参与了美国和国际上超过 2000 万平方英尺的工作。他专注于医疗保健领域,曾合作协调补充建筑系统、安装和启动许多成像和放射治疗套件,包括 MRI、MR/OR、直线加速器和质子束。除了调度、分阶段和关键路径分析经验外,Greg 还精通建筑商的风险索赔、编制详细的范围评估和合同审查。
摘要。3D 磁共振图像 (MRI) 中的脑肿瘤分割自动化是评估疾病诊断和治疗的关键。近年来,卷积神经网络 (CNN) 在该任务中表现出更好的效果。然而,高内存消耗仍然是 3D-CNN 的一个问题。此外,大多数方法不包括不确定性信息,这在医学诊断中尤其重要。这项工作研究了使用修补技术训练的 3D 编码器-解码器架构,以减少内存消耗并降低不平衡数据的影响。然后使用不同的训练模型来创建一个利用每个模型属性的集成,从而提高性能。我们还分别使用测试时间丢失 (TTD) 和数据增强 (TTA) 引入了体素不确定性信息,包括认知和随机信息。此外,提出了一种有助于提高分割准确性的混合方法。本论文提出的模型和不确定性估计测量已在 BraTS'20 挑战赛中用于肿瘤分割和不确定性估计的任务 1 和 3。
摘要我们介绍了分类器(AOC)的地图集,这是一个概念上新颖的脑MRI分割框架。AOC是从标记的数据中学到的素数逻辑回归(LR)函数的体素逻辑回归(LR)函数的空间图。收敛后,所得的固定LR权重,每个体素的几个代表训练数据集。因此,它可以被视为一种轻量级学习机器,尽管其容量较低并不削弱问题。AOC结构独立于测试图像的实际强度,提供了在可用标记的数据上训练它的灵活性,并将其用于分割来自不同数据集和模式的图像。从这个意义上讲,它也不会过分贴上培训数据。该提出的方法已应用于众多可公开可用的数据集,用于分割脑MRI组织,并被证明对噪声和外展具有鲁棒性。也获得了多模式的跨模式MRI分割的有希望的结果。最后,我们展示了如何利用对健康受试者的大脑MRI训练的AOC来用于对多发性硬化症患者的病变分割。
使用未增强的机器学习,基于大脑MRI衍生的体积特征将多发性硬化症患者(PWM)分层的抽象目标。方法回顾性地收集了包括3D-T1W和FLAIR-T2W序列的复发PWM的3-T脑MRI,以及残疾状态量表(EDSS)的扩大和长期(10±2年)临床结果(EDS,认知和渐进式课程)。从MRI中,脱髓鞘病变和116个Atlas定义的灰质区域的体积自动分割,并表示为引用外部种群的Z分数。在特征选择之后,基线MRI衍生的生物标志物进入了亚型和阶段推断(sovera)算法,该算法估计了以生物标志物进化的不同模式和亚组中的不同模式为特征的亚组。然后将训练的模型应用于纵向MRI。亚型和阶段变化随着时间的变化的稳定性分别通过Krippendorf的Sα和多级线性回归模型评估。通过序数/逻辑回归分析评估了维持分类的预后相关性。结果,我们选择了425个PWM(35.9±9.9岁; f/m:301/124),对应于1129次MRI扫描,以及健康对照(n = 148; 35.9±13.0年; f/m:f/m:77/71)和外部PWMS和外部PWMS(n = 80; 40.40; 40.4±11.9岁; f/m:56/M:56/M:56/M:56/M:56/M:56/。基于11种生物标志物的特征选择,确定了两个亚型,指定为“深灰质(DGM) - 首先”亚型(n = 238)和“ Cortex-first”亚型(n = 187),根据萎缩模式。亚型随着时间的推移是一致的(α= 0.806),年阶段显着增加(b = 0.20; p <0.001)。EDSS与阶段和DGM-FirST亚型相关(p≤0.02)。基线阶段预测了长期残疾,过渡到渐进型病程和认知障碍(p≤0.03),后者也与DGM-First第一个亚型有关(P = 0.005)。结论的无监督学习模型对大脑MRI衍生的体积特征提供了对PWM的生物学可靠和预后有意义的分层。关键点•脑MRI衍生的体积特征的无监督建模可以提供多发性硬化症患者的单访问分层。•所谓的分类往往会随着时间的流逝而保持一致,并捕获与疾病相关的脑损伤进展,从而支持模型的生物学可靠性。•基线分层可以预测长期的临床障碍,认知和过渡到次要进行的过程。
人工智能(AI)是一个快速增长的领域,具有改变医疗保健的潜力。AI涵盖了广泛的技术,使计算机能够执行通常需要人类智能的任务,例如学习,推理和解决问题。在医疗保健中使用AI已经显示出有望改善患者预后,降低成本和提高效率的希望。本文对AI在医疗保健中的当前应用以及AI在医疗保健中的未来可能性进行了全面审查。人工智能(AI)的快速进步为医疗保健行业带来了激动人心的机会。AI技术,例如机器学习,自然语言处理和计算机视觉,已彻底改变了医疗保健交付的各个方面。这些进步有可能显着改善患者护理,增强诊断,简化行政流程并推动医学研究和创新。AI在医疗保健中最著名的应用之一是诊断和医学成像。AI算法可以分析X射线,CT扫描和MRI等医学图像,以高精度检测异常,肿瘤和其他疾病。这有可能改善早期检测和诊断,从而带来更好的治疗结果。
通过脑部 MRI 扫描预测脑年龄不仅有助于改善脑老化模型,还能为预测分析方法提供基准。脑年龄增量是受试者预测年龄与真实年龄之间的差异,已成为脑部健康的一个有意义的生物标志物。在这里,我们报告了我们的脑年龄预测模型的详细信息以及 2019 年预测分析挑战赛的结果。挑战赛的目的是使用 T1 加权脑部 MRI 预测多中心数据集中受试者的年龄。我们应用了一种轻量级深度卷积神经网络架构——简单全卷积神经网络 (SFCN),并结合了数据增强、迁移学习、模型集成和偏差校正等多种技术来预测脑年龄。该模型在 PAC 2019 大脑年龄预测挑战赛的两个目标中均取得了第一名:未消除偏差时平均绝对误差(MAE)= 2.90 年(第二名 = 3.09 年;第三名 = 3.33 年),消除偏差后 MAE = 2.95 年,领先优势较大(第二名 = 3.80 年;第三名 = 3.92 年)。
REHP致力于为您提供全面的医疗保健。以下是您的非医疗计划的好处增强:减肥手术:减肥手术是一种用于帮助管理肥胖症的外科手术。自2025年4月1日生效,现在将根据您的医疗计划的政策涵盖减肥手术,而不是PEBTF制定的指南。诊断结肠镜检查和诊断性乳腺癌筛查:结肠癌和乳腺癌的预防性护理筛查很重要,可以挽救生命。REHP已经在一定时间间隔内免费提供了这些预防性护理筛查的覆盖范围。可能会有诊断性筛查的时间,因为您可能有症状。或在预防性结肠镜检查的情况下,发现并去除息肉。那时,筛查将被视为诊断,并受年度PPO扣除额的约束。生效于2025年4月1日生效,网络内诊断结肠镜检查,乳房X线照片,乳房超声和乳房MRIS将根据建议的时间间隔在PPO和HMO计划下不受年度PPO扣除额或COPASE的约束。避孕药:您的预防性处方药益处无需支付避孕药的覆盖范围,包括紧急避孕药和非处方避孕产品(避孕套,海绵,杀精子剂,口服避孕药)。现场避孕产品现在被有或没有处方覆盖。一些好处的增强功能早些时候有效。语音疗法 - 针对两岁至六岁的儿童的言语治疗这提醒人们这些好处的变化:医疗益处:根据计划的医疗政策涵盖医疗营养咨询。
摘要 —主观认知衰退(SCD)是阿尔茨海默病(AD)的临床前阶段,比轻度认知障碍(MCI)更早。进行性SCD将转化为MCI,并有可能进一步发展为AD。因此,利用神经成像技术(如结构MRI)早期识别进行性SCD对于早期干预AD具有重要的临床价值。然而,现有的基于MRI的机器/深度学习方法通常存在样本量小和可解释性不足的问题。为此,我们提出了一种可解释的具有域迁移学习(IADT)的自编码器模型来预测SCD的进展。首先,该模型可以利用目标域(即SCD)和辅助域(如AD和NC)的MRI来识别进行性SCD。此外,它可以通过注意机制自动定位与疾病相关的感兴趣的大脑区域(在脑图谱中定义),显示出良好的可解释性。此外,IADT 模型在 CPU 上仅需 5 ∼ 10 秒即可轻松训练和测试,适用于小型数据集的医疗任务。在公开的 ADNI 数据集和私有的 CLAS 数据集上进行的大量实验证明了所提方法的有效性。
摘要:在磁共振成像 (MRI) 上使用有效的分类技术有助于正确诊断脑肿瘤。先前的研究主要集中在使用支持向量机 (SVM) 和 AlexNet 等方法对正常 (非肿瘤) 或异常 (肿瘤) 脑 MRI 进行分类。在本文中,深度学习架构用于将脑 MRI 图像分类为正常或异常。性别和年龄被添加为更高级的属性,以实现更准确和更有意义的分类。还提出了一种基于深度学习卷积神经网络 (CNN) 的技术和深度神经网络 (DNN) 进行有效分类。还实施了其他深度学习架构,例如 LeNet、AlexNet、ResNet 和传统方法(例如 SVM)来分析和比较结果。年龄和性别偏见被发现更有用并且在分类中起着关键作用,它们可以被视为脑肿瘤分析中的重要因素。值得注意的是,在大多数情况下,所提出的技术都优于现有的 SVM 和 AlexNet。与 SVM(82%)和 AlexNet(64%)相比,总体准确率分别为 88%(LeNet 启发模型)和 80%(CNN-DNN),最佳准确率分别为 100%、92%、92% 和 81%。
脑肿瘤是最致命的癌症之一,死亡率超过 80%。快速准确的诊断对于提高生存机会至关重要。然而,在医学分析中,脑肿瘤的手动注释和分割可能很复杂。通常会分析多种 MRI 模式,因为它们提供有关肿瘤区域的独特信息。虽然这些 MRI 模式有助于分割神经胶质瘤,但它们往往会增加过度拟合和计算。本文提出了一种感兴趣区域检测算法,该算法在数据预处理期间实施,以定位显着特征并删除无关的 MRI 数据。这减少了输入大小,从而允许更积极的数据增强和更深的神经网络。在对 MRI 模态进行预处理之后,完全卷积自动编码器使用通道自注意力和注意力门对不同的脑部 MRI 进行分割。随后,使用测试时间增强和基于能量的模型进行基于体素的不确定性预测。在 BraTS 19、20 和 21 基准上进行了实验,所提出的模型在每个数据集上的平均骰子分数分别为 84.55、88.52 和 90.82,实现了最先进的分割性能。此外,定性结果用于评估分割模型和不确定性预测。这项工作的代码可在线获取:https://github.com/WeToTheMoon/BrainTumorSegmentation。