。CC-BY 4.0国际许可证。根据作者/资助者,它是根据预印本提供的(未经Peer Review的认证),他已授予Biorxiv的许可证,以在2021年10月21日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2021.10.20.20.465209 doi:Biorxiv Preprint
使用基于代理的建模为联合 C2 系统工程提供信息:分析和案例研究 Greg Schow 博士 Michael DiMario 任务系统 Ambrose Kam Mitchell Kerman Chuck Lutz 系统工程系统 Lockheed Martin MS2 Moorestown,新泽西州 08057 摘要……本文阐述了通过使用基于代理的建模“通知”系统工程过程的好处。虽然建模和仿真工具经常用于系统工程过程,但它们的典型用途为决策者提供了额外的信息。因此,这些工具用于在系统工程过程中“通知”决策者。最近进行了一项分析,以确定分布式系统 (SoS) 集成架构行为模型 (IABM) 环境中对复合战斗识别 (CCID) 推理算法 (CRA) 的意外影响。使用基于代理的模型 (ABM) 模拟方法来评估潜在的突发行为。基于 Dempster-Shafer 证据推理算法的 CRA 最近被引入文献中。对其有效性的研究仅限于该算法的单个实例。在调查分布式 CRA 有效性时,我们考虑了传感器和 CCID 信息在网络中共享的行为。特别是,网络延迟在不同时间将分布式传感器信息传递给 CRA 节点,从而扭曲了各个节点对给定轨迹的 CCID 建议。必须通过某种合适的仲裁方案来解决差异。我们在研究中考虑了四种方案:加权贝叶斯、朴素贝叶斯、多数投票和最大信念值。众所周知,分布式 SoS 架构表现出“突发”行为,而这种行为实际上不可能通过完全脚本化的模拟进行建模。我们选择应用 ABM 来捕捉这种行为,以“自下而上”评估我们的分布式 SoS 架构。在这种环境下,我们能够研究网络延迟和仲裁方案的变化对分布式 CRA 性能的影响。….
消毒被认为是控制病毒在水中传播的关键步骤。氧化剂是有效的病毒消毒剂。然而,缺乏氧化剂对病毒失活的相对效率的结论性研究,而实际水样品中的消毒性能尚不完全清楚。在这项研究中,评估了臭氧(O 3),过氧化氢(H 2 O 2)和过氧基硫硫酸盐(PMS)的消毒作用,以不同剂量和接触时间的不同剂量和接触时间。结果表明,O 3以最短的接触时间为较低剂量的MS2 Coliphage灭活。为了实现MS2 coliphage的4-log消毒,所需的氧化剂剂量被排名为O 3 此外,全面比较了去离子水和次级e uent中三种氧化剂的消毒性能。 所有三种氧化剂均达到了MS2 Coliphage的4型灭活。 激发 - 发射矩阵(EEM)的结果表明,所有三种氧化剂均同步去除溶解有机物,并且O 3氧化了溶解的有机物,同时保持了消毒效率。 总结一下,O 3是这三种氧化剂中MS2 Coliphage消毒的最佳选择。 结果丰富了水中病毒消毒的研究,并为进一步研究工业实践中氧化剂的剂量提供了理论基础。此外,全面比较了去离子水和次级e uent中三种氧化剂的消毒性能。所有三种氧化剂均达到了MS2 Coliphage的4型灭活。激发 - 发射矩阵(EEM)的结果表明,所有三种氧化剂均同步去除溶解有机物,并且O 3氧化了溶解的有机物,同时保持了消毒效率。总结一下,O 3是这三种氧化剂中MS2 Coliphage消毒的最佳选择。结果丰富了水中病毒消毒的研究,并为进一步研究工业实践中氧化剂的剂量提供了理论基础。
2019 1。Cunningham-Bryant,D.,Sun,J.,Fernandez,B。和Zalatan,J.G。CRISPR-CAS介导的酵母转录动力学的化学控制。Chembiochem。6月14日; 20(12):1519–1523。应用:使用GRNA与MS2结构域的诱导CRISPRA募集包含融合到诱导型激活剂和DCAS9的MS2外套蛋白的复合物。2。Taghbalout,A。等。通过Casilio-Me介导的RNA引导的甲基胞苷氧化和DNA修复途径的RNA引导的偶联增强了基于CRISPR的DNA去甲基化。自然通讯。10(4296)。doi.org/10.1038/S41467-019-12339-7应用:使用具有MS2结构域的GRNA,DCAS9,DCAS9和MS2涂层蛋白融合到DNA脱甲基化结构域。3。Tran,N.T。等。通过Cas9与同源重组因子的关联增强精确基因编辑。遗传学的前沿。10(365)。doi:10.3389/fgene.2019.00365应用:使用具有MS2域的GRNA以及Cas9和MS2涂层蛋白融合到同源性修复(HDR)的增强子。
该系统包含 3 个组件,它们在转染到细胞中后会形成 DNA 结合复合物。第一个组件是与转录激活因子 VP64 融合的 dCas9(死 Cas9,内切酶活性丧失),通常由四个串联的 VP16 拷贝(单纯疱疹病毒蛋白 16,氨基酸 437-447)组成。其他两个组件利用独特的 MS2 噬菌体蛋白/RNA 相互作用系统,其中噬菌体的外壳蛋白与独特的 19 核苷酸 RNA 适体紧密且特异性地结合。在 SAM 的第二个组件中,形成特征性茎环结构的 MS2 适体被添加到 sgRNA 中。sgRNA-MS2 组件与 dCas9 形成复合物,并将其引导至启动子区旁边的目标 DNA 序列
成簇的规律间隔短回文重复序列 (CRISPR) 和 CRISPR 相关蛋白 (Cas9) 系统是一种适应性免疫反应防御机制,古细菌和细菌利用该机制来降解外来遗传物质。该机制可以重新用于其他功能,包括哺乳动物系统的基因组工程,例如基因敲除 (KO) (1,2) 和基因激活 (3-5)。CRISPR 激活质粒产品利用与 VP64 激活域融合的 D10A 和 N863A 失活 Cas9 (dCas9) 核酸酶与 sgRNA (MS2) 结合,从而实现特定基因的识别和上调,sgRNA (MS2) 是一种靶向特异性 sgRNA,经过设计可结合 MS2-P65-HSF1 融合蛋白 (5)。这种协同激活介质 (SAM) 转录激活系统* 提供了一个强大的系统,可最大限度地激活内源性基因表达 (5)。
开发活体成像技术以提供染色质在活细胞中如何组织的信息对于解释生物过程的调节至关重要。在这里,我们展示了基于 CRISPR/Cas9 的活体成像技术的改进。在这种方法中,sgRNA 支架与 RNA 适体融合,包括 MS2 和 PP7。当死 Cas9 (dCas9) 与嵌合 sgRNA 共表达时,标记 MS2 和 PP7 适体的荧光外壳蛋白 (tdMCP-FP 和 tdPCP-FP) 被招募到目标序列中。与之前使用 dCas9:GFP 的工作相比,我们表明,使用基于适体的 CRISPR 成像构建体,瞬时转化的本氏烟的端粒标记质量得到了改善。标记受适体拷贝数的影响,受启动子类型的影响较小。相同的结构不适用于稳定转化植物和根中的重复标记。RNP 复合物与其靶 DNA 的持续相互作用可能会干扰细胞过程。
成簇的规律间隔短回文重复序列 (CRISPR) 和 CRISPR 相关蛋白 (Cas9) 系统是一种适应性免疫反应防御机制,古细菌和细菌利用该机制来降解外来遗传物质。该机制可以重新用于其他功能,包括哺乳动物系统的基因组工程,例如基因敲除 (KO) (1,2) 和基因激活 (3-6)。CRISPR 激活质粒产品利用与 VP64 激活域融合的 D10A 和 N863A 失活 Cas9 (dCas9) 核酸酶与 sgRNA (MS2) 结合,从而实现特定基因的识别和上调,sgRNA (MS2) 是一种靶向特异性 sgRNA,经过设计可结合 MS2-P65-HSF1 融合蛋白 (6)。这种协同激活介质 (SAM) 转录激活系统提供了一个强大的系统,可最大限度地激活内源性基因表达 (6)。
目前的单细胞 RNA 测序 (RNA-seq) 方法仅提供有关基因表达动态的有限信息。我们在此介绍 RNA 时间戳,这是一种通过利用 RNA 编辑推断 RNA-seq 数据中单个 RNA 年龄的方法。为了引入时间戳,我们用一个报告基序标记 RNA,该基序由多个 MS2 结合位点组成,这些位点会募集与 MS2 衣壳蛋白融合的腺苷脱氨酶 ADAR2。ADAR2 与标记 RNA 结合会导致 A-to-I 编辑随时间累积,从而可以以小时级精度推断 RNA 的年龄。通过结合由同一启动子驱动的多个带时间戳的 RNA 的观察结果,我们可以确定启动子何时处于活跃状态。我们证明该系统可以推断多个过去转录事件的存在和时间。最后,我们应用该方法根据过去转录活动的时间来对单个细胞进行聚类。RNA 时间戳将允许将时间信息纳入 RNA-seq 工作流程。
定期间隔间隔的短篇小学重复序列(CRISPR)和CRISPR相关蛋白(CAS9)系统是Archea和细菌用于降解的一种自适应免疫反应防御机制。该机制可以用于其他功能,包括用于哺乳动物系统的基因组工程,例如基因敲除(KO)(1,2)(1,2)和基因激活(3-6)。cRISPR激活质粒产物通过利用D10A和N863A停用CAS9(DCAS9)核酸酶与VP64 acti vation域融合的核酸酶,与SGRNA(MS2)(MS2),目标特异性SGRNA构成SGRNA工程2-HS 2-HS 2-HS 2-HS 2-HS 2-HS 2-HS 2-HS 2-HS 2-HS 2-HS 2-HS 2-HSFF F.Sff FORINAIN 。 这种协同激活介质(SAM)转录激活系统提供了一个强大的系统,以最大程度地激活内源基因表达(6)。。这种协同激活介质(SAM)转录激活系统提供了一个强大的系统,以最大程度地激活内源基因表达(6)。
