为了取代史蒂夫,我们选择提拔内部人才。自 2022 年 5 月 25 日起,Stuart Machin 将成为首席执行官,负责日常业务领导和执行委员会的工作。他将继续监督其当前的职责组合,包括食品业务、运营、物业、门店开发和技术的领导,并将负责人力资源和企业传播。Katie Bickerstaffe 已成为联席首席执行官,特别关注推动数字和数据以及我们全球全渠道业务的未来。她保留了现有的服装和家居、MS2、国际和金融服务职责。Eoin Tonge 已成为集团首席财务官兼首席战略官。除了目前的职责外,他还将在领导未来业务发展方面发挥更大作用,并将负责监督 A 计划。
免疫肽组的工作流程对于分析数据独立获取(DIA)质谱数据,尤其是在免疫学和癌症研究方面变得越来越重要。免疫肽,通过主要的组织相容性复合物(MHC)分子在细胞表面呈现的短肽片段,在免疫系统识别和反应异物或改变自身抗原的能力中起着至关重要的作用。这些肽通常存在于低丰度和表现出高度的多样性,对使用传统数据依赖性获取(DDA)方法提出了重大挑战。DIA质谱法提供了明显的优势。它始终捕获多个技术重复的低丰度肽的MS2光谱,从而增强了其识别和定量的可能性。然而,DIA光谱的复杂性质,再加上HLA肽的巨大搜索空间,在准确识别和量化这些重要分子方面带来了新的困难。
厌氧的蛋白质底物的共同消化是将有价值的原料转化为甲烷的重要策略,但它会释放出氨,可以抑制整体过程。这项研究开发了一种尖端的培养基和元基因组方法,以研究氨基沼气植物的微生物组成。新近分散的微生物用于用酪蛋白,玉米青贮饲料及其组合的压力大批批量演员的生物学。分离,选择富含蛋白水解细菌的共培养物与蛋白水解收集菌株假单胞菌DSM6252进行比较。将共培养物和伦敦氏菌与抗氨的甲虫甲状腺菌MS2结合使用,以提高过程稳定性。还测试了预先适应酪蛋白的微生物种群,以评估富含蛋白质的原料的消化。有希望的结果表明,将蛋白水解细菌和伯氏杆菌结合在一起,可以利用微生物培养物来改善厌氧消化稳定性并确保即使在最恶劣的氨气状况下也可以确保稳定的生产力。
恒星质谱仪用于发现和靶向定量分析,对从供体池中提取的消化细胞外囊泡(EV)进行了神经退行性下降。为了创建目标库,将500 ng的EV消化物加载到列上,并使用LC-DIA MS使用100个顺序2季度的DIA DIA扫描事件进行分析。在400–1,200个DA前体M/z范围内进行了四次重复注射。使用Thermo Scientific™Proteome Discoverer™软件处理所得的DIA数据。使用Thermo Scientific™PRM导体工具将搜索结果上传到天际线中,以进行过滤和靶向MS2(TMS2)方法,该方法根据用户定义的LC和MS标准将11,092个确定的肽过滤为最终的8,686。重复以确定TMS2方法的可重复性。样品由华盛顿大学迈克尔·J·麦科斯教授提供。
32. van den Worm, SHE;Valegård, K;Fridborg, K;Liljas, L;Stonehouse, NJ;Murray, JB;Walton, C;Stockley, PG。(1998 年)。MS2 外壳蛋白突变体与野生型 RNA 操纵子片段复合的晶体结构。核酸研究 26:1345-1351。33. Weinbauer, MG。(2004 年)。原核病毒的生态学。FEMS 微生物学评论 28:127-181。34. Wright, A;Hawkins, CH;Anggard, EE;Harper, DR。(2009 年)。治疗性噬菌体制剂在抗生素耐药性铜绿假单胞菌引起的慢性中耳炎中的对照临床试验;初步疗效报告。 Clin Otolaryngol 34: 349-57。35. Yin, S; Kiong Ho, C; Miller, ES; Shuman, S. (2004)。噬菌体 KVP40 和 T4 RNA 连接酶 2 的表征。Virology 319: 141-151。36. Zhang, J; McCabe, KA; Bell, CE. (2011)。与 DNA 复合的λ核酸外切酶晶体结构表明静电棘轮机制可用于加工性。美国国家科学院院刊 108: 11872-11877。
抽象最近的工作与剪接体组件U2AF35的两个锌指(ZnF)的点突变与恶性转化有关。然而,令人惊讶的是,对U2AF35 ZNF域的功能知之甚少。在这里,我们分析了哺乳动物U2AF35的ZNF域及其旁系同源物U2AF26的关键功能。两个ZNF都是剪接调节所必需的,而仅ZNF2控制蛋白质稳定性,并有助于与U2AF65的相互作用。这些特征在缺乏ZnF2的U2AF26的自然存在的剪接变体中得到了证实,该变体在激活原代小鼠T细胞时强烈诱导并局部位于细胞质中。在模型T细胞系中使用Ribo-Seq我们为U2AF26在激活基因表达中的细胞质步骤中的作用提供了证据,尤其是翻译。一致地,MS2绑定测定法表明,当定位于模型mRNA的5 rtr时,细胞质U2AF26/35增加了翻译。该法规部分取决于Znf1,因此在核心剪接因子,ZNF域和翻译调节之间提供了联系。总的来说,我们的工作揭示了U2AF26/35及其ZNF领域的意外功能,从而有助于更好地理解其在哺乳动物细胞中的作用和调节。
摘要:电动图像(MI)脑电图(EEG)自然而舒适,并且已成为大脑 - 计算机界面(BCI)领域的研究热点。探索主体间MI-BCI性能变化是MI-BCI应用中的基本问题之一。EEG微晶格可以代表大脑认知功能。在本文中,使用了四个EEG微骨(MS1,MS2,MS3,MS4)进行分析,分析受试者的Mi-BCI性能差异,并计算四个微杆菌特征参数(平均持续时间,每秒出现,时间覆盖率和时间覆盖率和过渡概率)。测量了静息状态EEG Microstate特征参数与受试者的MI-BCI性能之间的相关性。基于MS1的发生的负相关性和MS3平均持续时间的正相关性,提出了静静态微晶格预测指标。28名受试者参加我们的MI实验,以评估我们静止状态的Microstate预测指标的性能。实验结果表明,与频谱熵预测变量相比,我们静止状态的Mi-Crostate预测器的平均面积(AUC)值为0.83,增加了17.9%,表明微骨特征参数可以更好地表明受试者的MI-BCI性能比光谱enterpy enterpropy预测器。此外,在单节水平和平均水平上,Microstate预测指标的AUC高于光谱熵预测变量的AUC。总体而言,我们的静止状态微晶格预测指标可以帮助MI-BCI研究人员更好地选择受试者,节省时间并促进MI-BCI的发展。
Es 可实现删除、插入和碱基替换而不会造成双链断裂 1 。然而,目前的 PE2、PE2* 和 PEmax 效应物(nCas9 与 Moloney 鼠白血病病毒 RT(M-MLV RT)的融合)1 – 3 > 6.3 千碱基 (kb),超出了 AAV 的包装能力。高产量生产如此大的蛋白质或 mRNA(用于核糖核蛋白 (RNP) 或 RNA 递送)也是一项挑战。尽管一些拆分策略已用于递送 Cas9 相关基因组编辑工具 4 ,包括拆分内含肽 5 – 7 和 MS2(参考文献 8 – 10)或 SunTag 11 系链,但大多数拆分方法才刚刚开始应用于 PE 2、12、13。这些元素增加了 PE 系统的尺寸、分子复杂性以及生产和递送负担,并且限制了 PE 开发的组合吞吐量(即核酸酶和 RT 成分的混合和匹配)。pegRNA 优化对于有效的引物编辑也很重要。当前的 pegRNA 是一种结合 RNA,由 sgRNA 和包含 RT 模板 (RTT) 和引物结合位点 (PBS) 的 3′ 延伸组成。尽管在 PE 系统中整合 RNA 分子很简单,但由于 PBS 和间隔区之间不可避免的碱基配对以及潜在的 RTT-支架相互作用,它容易发生 RNA 错误折叠。最后,pegRNA 中的 3′ 末端延伸暴露在外,易受核酸酶降解,这可能会损害 pegRNA 的完整性。虽然 3′ 末端二级结构提高了 pegRNA 的稳定性 14 ,但仍需要进一步努力减少 pegRNA 的错误折叠和不稳定性。
噬菌体,侵入细菌细胞的病毒是生物圈中最丰富的生物。噬菌体包括具有双链DNA(最常见),单链DNA,单链RNA和双链RNA(最不常见)的病毒。大多数病毒体(96%)是尾巴的;其他类型是立方体,丝状或多态性。噬菌体基因组是由于高频率的水平遗传交换和重组而多样化和普遍的镶嵌性。噬菌体可能具有裂解或裂解生命周期。它们附着在特定细菌上,并通过酶内olysins和holins杀死,而不会因宿主特异性而影响共生微生物。有一个恒定的“进化武器竞赛”,导致竞争性细菌噬菌体的进化。正在开发许多多种多样和复杂的细菌防御机制,以抑制噬菌体生命周期的各个阶段。同时,噬菌体也发展为克服这些细菌防御。正在开发基于噬菌体的治疗方法,其中单噬菌体,噬菌体鸡尾酒,噬菌体衍生的酶,噬菌体与抗生素结合使用,而转基因噬菌体可能有用。这对于用多药耐药(MDR)病原体以及去除生物膜的感染治疗感染可能很有用。新生儿(2023):10.5005/jp-journals-11002-0078Keywords: Abi-associated enzymes, Abortive infection, Adsorption block, Bacteriophage, Bacteriophage exclusion system, Biofilms, Bradley's classification, Carjivirus communis , Caudovirales, Chromosomal islands, Contractile tails, Cosmids, CrAssphage, CRISPER-cas bacterial immune system, Darwinian principles, Double-stranded DNA, Destruction of phage DNA after injection, Diversity-generating retroelements, dsDNA, Endolysin, Enterobacteria P4-like prophages, ESKAPE, Evolutionary arms race, Glucosyl-hydroxymethylcytosine, Helper proteins, Human phageome, Hydroxymethylcytosine, Infant, Lactococcus phage c2, Lit activator gol peptide, Long non-contractile tails, Lytic cycle, Lysogenic cycle, Metagenomics, Mosaicism, MS2 coat, Mycoplasma phage P1, Myoviridae, Neonate, Newborn, P2-like prophages, Pasteurella phage F108, Penetration block, Phage display, Phagemid, Phage coevolution, Phage cocktail, Phage terminase small subunit, Phage anti-restriction-induced system, Phage ecology, Podoviridae, Polyphage, Prophage, Prokaryote viruses, Prokaryotic argonautes, Pseudolysogenic cycle, Receptor, Receptor-binding proteins, Restriction-modification systems, RexAB system, Retrons, Short tails, Siphoviridae, ssRNA, Temperate phage, Toxin-antitoxin systems, Transduction,有毒的噬菌体。
剪接是去除前 mRNA 片段(称为内含子)同时将片段(称为外显子)连接在一起形成成熟 mRNA 的过程 1 。可变剪接是一种现象,其中基因的不同外显子片段剪接在一起形成具有不同序列的成熟 mRNA,大大扩展了单个基因编码的蛋白质库。可变剪接过程深深嵌入基因调控网络中,并控制 90% 以上的人类基因的基因异构体表达 2 。鉴于其普遍性,RNA 剪接失调与许多疾病有关也就不足为奇了 3 – 5 。RNA 测序是一种强大的工具,可用于“读取”转录组并识别不同细胞类型、条件和疾病中可变剪接的变化 2、5、6。但是,缺乏一种可扩展的工具来精确且可逆地“编写”可变剪接。尽管针对特定基因异构体进行降解的异构体特异性 RNAi 或异构体特异性 cDNA 过表达可用于扰乱异构体水平 7、8,但可能无法保持靶基因的整体表达水平。虽然剪接转换反义寡核苷酸 (ASO) 可有效扰乱剪接,甚至已进入临床试验 9,但它们的成本对于大规模研究而言过高,并且需要筛选许多设计以确定有效的靶序列。此外,由于 ASO 本质上是瞬时的,因此它们不适用于需要稳定或可诱导表达的用例。RNA 调节蛋白与异源 RNA 结合结构域的融合,例如 Pumilio/PUF、MS2 外壳蛋白 (MCP)、PP7 外壳蛋白 (PCP) 和 λ N,已经允许人工调节 RNA 过程 10 – 15。例如,通过工程化的 PUF 结构域将富含丝氨酸或富含甘氨酸的结构域束缚到外显子上,分别诱导它们的包含或排除12。然而,这些人工 RNA 效应分子需要蛋白质工程或在靶 RNA 中插入人工标签,并且依赖于短识别序列,这限制了靶向灵活性和特异性。遗传学和表观遗传学领域极大地受益于基于 RNA 引导的 DNA 靶向 CRISPR-Cas 系统的技术的爆炸式增长 16。我们,以及其他一些人,已经成功地实施了分子工具来修改目标 DNA 位点的遗传序列或表观遗传状态 17-25。CRISPR 介导的 DNA 水平基因编辑方法已被用于扰乱剪接(在剪接位点进行碱基编辑/插入缺失或切除整个外显子)19-21。然而,由于共享同一 DNA 片段的 DNA 顺式调控元件(例如转录因子结合位点)可能受到干扰,因此这些方法可能会产生混淆效应。此外,使用 CRISPR 介导的 DNA 缺失或突变方法很难促进外显子的插入。首次证明了使用 CRISPR 靶向 RNA 的激动人心的前景,即将最常用的 DNA 靶向 SpCas9 转化为 RNA 核酸酶“ RCas9 ”,并添加了 PAMmer - 一种寡核苷酸,当与靶 RNA 结合时,会模拟 SpCas9 结合所需的原型间隔区相邻基序 (PAM) 19 。虽然将 RCas9 靶向重复序列不需要 PAMmer 26 ,但重复序列仅占所有 RNA 顺式调控元件的一小部分。继 RCas9 首次报道之后,其他 CRISPR/Cas9 系统也被发现可在体外与单链 RNA 结合 27 、 28 ,但缺乏它们在哺乳动物细胞中体内 RNA 结合的证据。最近发现了来自细菌 CRISPR 系统的 RNA 引导的 RNA 核酸酶 29 – 31 。它们对哺乳动物细胞的适应不仅允许可编程的 RNA 降解 29、31、32,而且还可用于设计新功能,例如 RNA 序列编辑 30、活细胞 RNA 成像 32 和诊断 33。特别是,CasRx 是从 Ruminococcus flavefaciens 中分离出来的最近鉴定出的 IV-D 型 CRISPR-Cas 核糖核酸酶
