维克多·布拉热耶夫 ,莫斯科库塔芬国立法学院(MSAL)校长,俄罗斯律师协会联合主席,俄罗斯联邦荣誉律师 弗拉基米尔·西纽科夫 ,法学博士,教授,莫斯科库塔芬国立法学院(MSAL)科研活动副校长,俄罗斯联邦荣誉科学家 格里戈里·伊夫利耶夫 ,欧亚专利局局长,俄罗斯联邦荣誉律师 弗拉基斯拉夫·格里布 ,法学博士,教授,俄罗斯联邦公共院副秘书长,俄罗斯教育科学院院士,《律师》出版集团主编,俄罗斯联邦荣誉律师 伊万·季莫费耶夫 ,俄罗斯国际事务委员会(RIAC)项目主任,副教授,政治学博士 阿兰·杜弗洛 ,论坛副主席,法国里昂第三大学让穆兰教授,法国国际律师和经济学家联盟联合主席,创始人Duflot&Partners 律师事务所(法国里昂) Dalbir SINGH ,欧亚人民议会总委员会联合主席、印度国大党全国书记、政策与治理基金会主席、伊诺波利斯大学名誉博士(印度) Marco RICCERI ,欧洲政治、经济和社会研究所(EURISPES)秘书长(意大利) 李居乾 ,中国政法大学国际法研究中心主任、国际合作与交流处处长、教授(中国) Daniel BRANTES FERREIRA ,法学博士,坎迪多门德斯大学教授,巴西安布拉大学教授,巴西仲裁与调解中心学术事务副主席(巴西)
论坛程序委员会: 维克多·布拉热耶夫 ,莫斯科库塔芬国立法学院(MSAL)校长,俄罗斯律师协会联合主席,俄罗斯联邦荣誉律师 弗拉基米尔·西纽科夫 ,法学博士,教授,莫斯科库塔芬国立法学院(MSAL)科研活动副校长,俄罗斯联邦荣誉科学家 格里戈里·伊夫利耶夫 ,欧亚专利局局长,俄罗斯联邦荣誉律师 弗拉基斯拉夫·格里布 ,法学博士,教授,俄罗斯联邦公共院副秘书长,俄罗斯教育科学院院士,《律师》出版集团主编,俄罗斯联邦荣誉律师 伊万·季莫费耶夫 ,俄罗斯国际事务委员会(RIAC)项目主任,副教授,政治学博士 阿兰·杜弗洛 ,论坛副主席,法国里昂第三大学教授,国际律师和经济学家联盟联合主席(法国),Duflot&Partners 律师事务所创始人(法国里昂) Dalbir SINGH ,欧亚人民议会总委员会联合主席、印度国大党全国书记、政策与治理基金会主席、Innopolis 大学名誉博士(印度) Marco RICCERI ,欧洲政治、经济和社会研究所(EURISPES)秘书长(意大利) 李居乾 ,中国政法大学国际法研究中心主任、国际合作与交流处处长,教授(中国) Daniel BRANTES FERREIRA ,法学博士,Candido Mendes 大学教授,巴西安布拉大学教授,巴西仲裁与调解中心学术事务副主席(巴西)
外语 英语,C2 精通 证书、课程和培训 职业培训,棉花改良的 DNA 分子标记技术,德克萨斯理工大学,德克萨斯州,美国,2009 职业培训,豆科植物改良的 DNA 分子标记技术,西澳大利亚大学,珀斯,澳大利亚,2008 职业培训,作物改良的 DNA 分子标记技术,作物改良的 DNA 分子标记技术,国际干旱地区农业研究中心,2008 职业培训,农业基因操作和生物信息学入门,大阪国立大学,日本,2003 职业培训,双单倍体大麦生产,Estacion Experimental De Aula Dei,萨拉戈萨,西班牙,2002 职业课程,Bitki Biyogüvenlik Araştırmaları,Tübitak,2002 学术头衔/任务 教授,埃斯基谢希尔奥斯曼加齐大学,Ziraat Fakültesi,塔林Biyoteknoloji Bölümü,2024 - 继续 副教授,埃斯基谢希尔·奥斯曼加齐大学,Ziraat Fakültesi,Tarımsal Biyoteknoloji Bölümü,2021 - 2024 副教授,锡诺普大学,文理学院,生物学系,2018 - 2021 助理教授,锡诺普大学,文学院科学, 生物学系, 2011 - 2018
针对农产品库存不足,无法满足世界人口快速增长带来的粮食需求、气候变化导致农场动物适应困难、各种广泛传播的疾病等问题,每天都有新的解决方案出现。科学家普遍认为,利用最近发展的基因组编辑技术可以解决这些问题。基因组编辑是通过核酸酶在基因组的指定位置创建位点特异性DNA双链断裂(DSB),然后通过同源重组(HDR)或非同源重组(NHEJ)方法之一修复双链断裂,从而产生基因组改变的方法。将这些方法与胚胎移植技术相结合并应用于动物养殖的主要目的是提高产量和品质,以及提高动物福利和抗病能力。本研究旨在阐明基因组编辑方法及其在畜牧业中的应用领域。
植物的基因组序列和基因组排列技术的进步已经增加了几乎任何农业特征的繁殖可能性。ZFN(锌核酸盐)和TALEN(转录激活剂效应子核酸酶),使得调节在分子水平上处理的任何基因成为可能。相比之下,CRISPR / CAS9基因组编辑方法包含简单的设计和易于克隆方法。cas9可以在一个以上的基因区域中与针对基因组中多个区域的不同引导(指南)RNA不同。CRISPR-CAS9模块中,使用了几种不同的修改CAS9盒来提高目标特异性并减少非目标分裂。还提供了新的选择来提高基因调节方法的特异性和效率。在这项研究中,植物育种中总结了基于CRISPR/CAS9的基因组编辑技术,并提出了CRISPR/CAS9的研究来提高生物和非生物胁迫耐受性。
• 发送日期 / 收到日期:2018 年 7 月 12 日 • 修改发送日期 / 收到修订版:2018 年 8 月 29 日 • 喀布尔日期 / 接受日期:2018 年 9 月 17 日 摘要 提出了一种改进的基于软件的复制相关器方法,该方法适用于微处理器控制的声纳浮标系统,可提高水下物体的探测性能。在海洋中,微处理器控制的浮标可自动进行无线扫描,以清除水下信息,并将其无线传输到主控制站进行额外处理和最终决策。本研究介绍了具有 7-31 单元复制相关的声纳浮标性能和系统设计方案。虽然数字延迟线用于最小化基于硬件的副本相关器的复杂性,但微处理器控制的浮标内所提出的软件副本相关系统已经提高了性能。关键词:浮标、微处理器控制、复制相关、声纳、水下监视。Denize veya okyanus içerisinde、mikroişlemci kontrollü şamandıra、sualtı bilgisinin çıkarılması için otomatik olarak taranması ve daha ileri işlem ve nihai kontrol eylemi sağlanması amacıyla bir uzak yer istasyonuna kablosuz olarak iletilmesi sağlanır。Bu çalışmada,7-31 hücre Replica korelasyonunu içeren sonar şamandıra Performansı ve sistem tasarım taslağı sunulmuştur。Donanımsal replica korelatörünün karmaşıklığı, dijital gecikme kanalları kullanılarak en aza indirilmesine rağmen, önerilen mikroişlemci kontrollü şamandıra, yazılım aracılığıyla replika korelasyonu gerçekleştirilmiş ve geliştirilmiş sistemle Performans artırılmıştır。Anahtar Kelimeler:Şamandra、mikroişlemci kontroller、replika korolasyon、声纳、sualtı gözetim
农产品中的细胞内和外部植物病原体都在全球造成巨大的经济损失。基因组编辑技术,尤其是CRISPR/CAS系统,最近已在不同的领域使用,以提高农产品的质量和产量。CRISPR/CAS系统,可为细菌,考古,工资和外国质量剂提供防御,是一种工具,为农业特征的研究和调节提供了独特的机会。在这篇综述中,检查了CRSPR/CAS系统在与引起疾病的植物原生物作斗争中的使用。此外,通过CRISPR/CAS系统,已经揭示了对宿主植物对真菌,细菌和病毒的耐用性和敏感性发挥作用的基因修饰状态。研究表明,CRISPR/CAS系统可有效地提供对植物中植物原子的耐药性。基因组布置领域的进展以及CRISPR/CAS和TRESSGEN -FREE植物将在未来发展新的疾病管理和战斗策略。将来还将能够与CRISPR/CASPR基因组编辑技术同时开发多种致病植物。
使用农业废物,环境敏感性的增加以及将废物带入经济的事实日益普遍。这项研究的目的是研究复合材料的生产中榛子(被认为是废物)的可用性。复合实验材料由最大,50、150、250、425 µm大小和5%,10%,15%,20%的体重率,并填充榛子颗粒。启动缺口比(Notch长度/样品宽度)A/ W = 0.3打开了对样品的启动缺口。这些样品的模式(裂纹打开)是在三个点弯曲测试的帮助下确定的。临界应力暴力因素是在初始缺口深度方法的帮助下计算的。通过三个点弯曲测试确定弯曲模块和弯曲应力,并使用标准缺口确定了抗性值。榛子 /聚纤维含石复合材料组成和微型结构泡沫变换红外分光光度计和扫描电子显微镜测量结果。根据研究的发现,用0-50 µM榛子颗粒生产的复合材料的机械性能高于带有大规模增强的复合材料。
近年来,随着基因组技术和分析方法的传播,遗传性遗传疾病以及各种癌症的差异诊断,预后的确定,该疾病的后果在开创性速度方面发展了发展。基因组方法,可快速,同时确定患者基因组中的遗传或体细胞突变,为更快地检测原始治疗目标铺平了道路。基因组分析方法包括整个基因组序列(WGS),整个外部布置(WES)和靶向排列以及整个转录序列(WTS)。可能与癌症和其他遗传疾病发展有关的许多突变和转录已通过诸如整个外部排列,整个基因组序列和所有转缩序列等方法确定。在多种突变共同促进的遗传疾病中,特殊设计的靶向基因面板在诊断和预后改善的背景下具有巨大的潜力。此外,通过超靶向的序列确定循环无DNA突变的是诊断遗传疾病,包括癌症,预后和对治疗反应的估计。通过基因组分析也可以使用有关Covid-19疾病对我们当前生活的临床重要信息。在本书部分中,它重点介绍了基因组方法在生物多样性领域的当前和潜在应用。近年来基因组方法中最突出的方法之一是通过CRISPR-CAS9进行的基因组调节,此方法的各种应用为遗传疾病和基因表征提供了机会。