摘要 - 腿部机器人正在出现,并且非常需要腿部的机车,这需要精确的腿部运动动力学来执行控制命令或计划运动轨迹。本文提出了在线状态估计,以确定具有任意腿部数量的机器人的腿部运动学,其中包括腿部变换,时间偏移和腿链路长度的运动学参数。尤其是我们主张一个地面舞蹈步态,以进行运动学的决心,脚趾在地面上保持静态并充当大满贯中的静态地标。作为视觉惯性传感器通常在机器人机器人上可用,并且位于浮动基础上,我们利用有效的基于MSCKF的视觉惯性导航来估计腿部运动学。为此,我们通过分析得出了腿部运动测量的分析,并将它们与视觉惯性测量紧密融合,以更新腿的运动学和身体运动。在模拟和实验中,该方法已通过不同的四倍体进行了广泛的验证,显示出其稳健性和准确性。
摘要 - 多机器人同时本地化和映射(SLAM)使机器人团队通过依靠环境的共同地图来实现协调的任务。通过对机器人观测的集中处理来构建地图是不可取的,因为它会产生单个失败点并重新存在预先存在的基础架构和显着的通信吞吐量。本文将多机器人对象猛击制定为通信图上的变异推理问题,受不同机器人主导的对象估计的共识约束。为了解决该问题,我们开发了一种分布式的镜面下降算法,并在通信机器人之间实施了正则化的共识。使用算法中的高斯分布,我们还为多机器人对象大满贯提供了分布式多状态约束Kalman滤波器(MSCKF)。对真实和模拟数据的实验表明,与单个机器人大满贯相比,我们的方法改善了轨迹和对象估计,同时与集中的多机器人大满贯相比,在大型机器人团队中实现更好的缩放。