20 世纪初发明的用于近似解决边界值问题的 Ritz-Galerkin 方法假设近似解的函数是定义在整个相关域上的解析函数。在实际应用中,这些函数要么是三角函数,要么是无限平滑的多项式,即它们有无数个导数。此类函数有两个主要问题。首先,很难或不可能构建先验满足任意域边界上基本边界条件的函数(在结构分析中,这些条件表现为位移约束)。其次,基于此类函数构建的方程系统病态且数值不稳定,无法以足够高的精度解决实际问题。
21. 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 67
穿过一个线圈绕组的交流电会产生磁通量,从而在相邻线圈中感应出电流。电压调节是通过改变线圈匝数来实现的。由于铁芯由钢(一种磁致伸缩材料)制成,这些磁通量(交替方向)会引起机械应变。这会因金属的快速膨胀和收缩而产生振动。这些振动通过油和固定内芯的夹紧点传递到油箱壁,产生可听见的嗡嗡声,称为铁芯噪声(见图 2,底部)。除了铁芯噪声之外,线圈中的交流电还会在各个绕组中产生洛伦兹力,从而引起振动(称为负载噪声),这会增加传输到油箱的机械能。面对这些多个噪声源以及相互关联的电磁、声学和机械因素,ABB 企业研究中心 (ABB) 的工程师
纳库鲁·汤姆森(Nakuru-Thomson)的瀑布汉宁顿地区的地质,位于格雷戈里裂谷山谷和其东部肩膀上,这很复杂。从中新世时期到当今熔岩的爆发,是从中央和裂缝来源的间隔进行的。最早的喷发是最广泛的,而最近的喷发幅度很小。在漫长的悠久历史中,爆发了两种熔岩套件,这是一个弱的碱性基本套件,具有超前的助理,以及一个强质性特征的碱性中间套件。这些熔岩的母体岩浆体永远不会暴露,但是固定石巨石本地的发生为中间套件的父岩浆的性质提供了线索。熔岩的总量很大;这是世界上主要的火山领域之一。硫化性发生在减小幅度的发作中,即时代,上新世,下更新世,中部平民,上层苯甲酸,上更新世和近期 - 每个火山浇注都通过移动而成功,正常的断层与甲壳的正常断层相比。重大断层发作发生在中新世硫酸,上新世和下更新世硫酸之后。较小的运动更新比中更新世晚。活动区域(散发性和运动)在裂谷中被认为逐渐变窄。
� � 我们参与制定国际工作中不断发展的标准
这里详细解释了如何在 COMSOL Multiphysics [1] 中从头开始设置介电谐振器模拟。这些解释对于任何希望修改作者现有模型(如 .MPH 文件中的模型)的人也应该有所帮助。至少在第一次尝试时,建议严格遵循以下说明,以免偏离久经考验的道路。建议读者在桌面上打开并运行 COMSOL Multiphysics 来完成这些操作。与程序相关的所有菜单项、表达式名称和变量都以键入的文本字体显示。在 COMSOL Multiphysics 附带的文档中可以找到大量补充信息;作者发现其中的以下章节最有用/最相关:《基于方程建模的 PDE 模式》、《弱形式》和《COMSOL Multiphysics 脚本》。阅读这些章节后,您可能会觉得 COMSOL 不够灵活,无法完成手头的任务(即明确实现本文的第 II 至 IV 节);尽管有这些第一印象,但以下说明展示了 COMSOL Multiphysics 如何以最直接的方式配置以实现各向同性介电谐振器的 2D 模拟。从头开始:
METRO 模拟器与飞行员训练模拟器有很多共同之处,由汤姆森-CSF 负责训练模拟器 (TTSS)、防空系统 (Airsys) 和机载系统 (RCM) 的部门联合开发。它很好地说明了使用标准和标准化程序的好处。通过这种方法,系统中的不同参与者可以建立实时计算机模型,或包含真实设备项目的混合模型 - 无需所有人都在同一个物理位置,也无需交换他们负责的设备或子系统的详细模型。
