始终运行发射器可节省大量电量。在每秒进行三次轮询的系统中,系统仅约 1% 的时间处于活动状态。在睡眠状态下,TRF79xxA 几乎不消耗任何电量,而 MSP430 消耗的电流量可忽略不计(约 0.8 µA)。在持续几毫秒的活动状态下,TRF7970A 会快速打开、初始化,并执行发射器突发。这会打开发射器约 20 µs。在关闭之前,比较器会初始化,并启动计时器来测量时间。计时器一直运行,直到比较器发出中断,指示已超过阈值电压。此时的定时器时间是信号的衰减时间。如前所述,较长的时间表示功率耦合,这意味着卡可能已处于现场。
所有这些终端设备示例都有类似的关键“关注点”,例如:• 必须优化总系统成本。• 电气设计 – 平台或模块化设计正变得越来越普遍,重点是可在全球范围内部署 – 即一种设计可以在所有国家/地区使用(例如基于 TRF79xxA 系列设备的 13.56MHz 系统)。• 机械设计必须坚固、安全,并提供各种级别的防破坏保护。• 用户友好且直观 – NFC/RFID 系统不是视线范围内,但用户无需经过大量培训即可与它们交互,因此设计必须始终提供轻松的用户体验。• 低功耗比以往任何时候都更重要,如果按照本文档后面所述实施,则可以成为真正的差异化因素和竞争优势。
Riotee模块。图2说明了里约热道模块的框图。带有最大功率跟踪的增强充电器将能量从附件的收割机传输到车载自由度。两个比较器针对两个软件定义的电压阈值监视电容器电压,并将阻碍电源故障的软件通知软件。该模块具有两个完全可编程的微控制器,这些微控制器通过4线SPI总线连接,并共享对系统的所有其他组件的访问:Nordic分号NRF52833具有64 MHz Cortex-M4 CPU,带有浮点单元和低调的2.4 GHZ GHZ GHZ WIDEELLEDELED。Ti MSP430FR5962具有128 kb的非易失性框架,用于跨功率故障保留应用状态。应用程序和网络代码可以在功能强大的NRF52上运行,并使用MSP430作为非挥发处理的协调员保留跨功率故障的应用程序状态。替代,应用程序代码可以在MSP430上运行,并将NRF52用作无线处理器。启用了计时和电容器电压监视时,Riotee模块绘制4 µA。在最深的睡眠模式下,电流绘制范围低于0。1 µA。1 µA。
- P. Pachowicz,项目,实时系统设计2。ECE 511微处理器 - J.P. Kaps,项目,基于MSP430微控制器的系统3。ECE 611高级微处理器 - H.HoMAYOUN,项目,计算机体系结构仿真工具4。ECE 612实时嵌入式系统 - C. Sabzevari,项目,编程分布式实时系统5。ECE 641计算机系统体系结构 - H.Homayoun,项目,计算机体系结构仿真工具6。ECE 699软件 /硬件代码 - K. GAJ,用VHDL和C 7的SOC设计。< / div>。< / div>ECE 699异质体系结构和绿色计算 - H.HoMayoun,项目,计算机体系结构仿真工具
图 40 - 第一种设计方案。所有模块都是独立的。这提供了更大的灵活性,但重量更重、占用更多空间且成本更高。 ................................................................................................................... 56 图 41 - 第二种设计方案。这将图像处理、CCU 和加密模块组合在一个处理器上。虽然这可以节省资金并减轻重量,但内存容量是一个问题,并且可能更难实现图像处理。 ................................................................................................................ 57 图 42 - 第三种设计方案。这提供了允许由 CCU 的特定加密模块进行加密的优势。这还可以节省重量和资金,同时允许为其挑选更适合图像处理的单独模型。 ................................................................................................ 58 图 43 - OMAP 4470 架构。这显示了 OMAP 内部的所有处理器以及无线、音频和其他连接端口 [59]。................................................................................................ 61 图 44 - MSP430 微处理器架构。这显示了所有内存、ADC、DAC、输入/输出端口和时钟 [63]。................................................................................................................ 64 图 45 - 典型的数字信号处理系统。................................................................
摘要。本文介绍了配备四个 PNI RM3100 磁强计的 CubeSat 磁强计板 (Quad-Mag) 的设计、特性和性能。RM3100 体积小、重量轻、功耗低且成本低,因此可以在单个板上集成四个传感器,通过使用多个传感器进行过采样,可以将单个传感器的本底噪声降低 2 倍。该仪器在实验中实现了 5.34 nT(单个轴)的本底噪声,四个磁强计的每个轴的平均本底噪声为 65 Hz,接近理论上为系统设定的 4.37 nT(40 Hz 下)的极限。单个板载德州仪器 MSP430 微控制器负责处理磁强计的同步,并通过简单的基于 UART 的命令接口与主机系统进行数据收集。 Quad-Mag 系统重量为 59.05 克,采样时总功耗为 23 mW,空闲时为 14 mW。在最佳条件下,Quad-Mag 可使用商用现成的太空应用传感器以 1 Hz 的频率实现近 1 nT 的磁场测量。
摘要 — 伽马射线模块 (GMOD) 是一项用于探测低地球轨道伽马射线爆发的实验,是 2-U 立方体卫星 EIRSAT-1 上的主要科学有效载荷。GMOD 包括一个与硅光电倍增管耦合的溴化铈闪烁体,由定制的 ASIC 处理和数字化。GMOD 主板上的定制固件已设计、实施和测试,用于管理实验的 MSP430 微处理器,包括系统的读出、存储和配置。该固件已在一系列实验中得到验证,这些实验测试了主要时间标记事件 (TTE) 数据在 50 Hz 至 1 kHz 的实际输入探测器触发频率范围内的响应。研究了固件的功耗和成功接收和传输数据包到机载计算机的能力。实验表明,在标准传输模式下,高达 1 kHz 的数据包丢失率低于 1%,功率不超过 31 mW。所展示的传输性能和功耗均在此 CubeSat 仪器所需的范围内。索引术语 —CubeSat、伽马射线、探测器、伽马射线爆发、欧洲航天局“飞向你的卫星!”计划
TI MSP430™ 系列超低功耗 MCU 由多种设备组成,这些设备具有针对各种应用的不同外设集。该架构结合了五种低功耗模式。该设备具有强大的 16 位精简指令集计算 (RISC) CPU、16 位寄存器和常数生成器,有助于实现最大代码效率。数控振荡器 (DCO) 允许设备在不到 5 µs 的时间内从低功耗模式唤醒到活动模式。 MSP430F51x2 系列是微控制器配置,具有两个 16 位高分辨率定时器、两个通用串行通信接口 (USCI) USCI_A0 和 USCI_B0、一个 32 位硬件乘法器、一个高性能 10 位 200 ksps 模数转换器 (ADC)、一个片上比较器、一个三通道直接存储器访问 (DMA)、5V 容限 I/O 和最多 29 个 I/O 引脚。定时器事件控制模块将不同的定时器模块相互连接,并将外部信号路由到定时器模块。该器件能够以高达 25 MHz 的系统频率工作。该器件的工作温度为 –40°C 至 85°C。
摘要。为了解决当前传输线的实时监控的问题,本文提出了一种基于事物互联网技术的传输线的基于信息的监视系统。该系统利用了强大的可伸缩性,良好的容错性,低功耗和物联网成本低的特征。以超低功率消耗MSP430微控制器和CC2430射频模块为核心,设计了基于物联网的线监视系统。拟议的设计使用由太阳能提供动力的Zigbee无线传感器网络技术。实现了该行的各种环境参数的收集,传输,处理和判断。通过GPRS将数据信息传输到上计算机的监视中心。当异常情况时,它可以向负责人发送手机简短消息以及时反馈异常内容。分销网络的负载对称性允许开发多个定位过程。对于三相对称方案,采用了基于线供应特征的故障位置方法,对于三相不对称方案,提出了基于线阻抗的断层位置技术。物联网最重要的用途之一是减轻电力传输线故障和灾难。由于物联网的最先进的感应和通信技术,可以提高电力传输可靠性,减少财务损失和更少的停电。这项研究介绍了物联网在电力传输线的在线监视系统中的使用,重点是智能电网的构建和开发特征。结果表明该系统的最高温度差为0.31°C,而最大湿度差为1.38%。该系统提高了电力传输的安全性和可管理性,同时还促进了智能电网和物联网的广泛采用和技术整合。
