在自由行动或野生动物中对传染病的监测已在COVID-19发作之后在许多栖息地国家进行了广泛进行。泰国位于长尾猕猴(Macaca fascicularis; MF)的分布范围的中心,其中动物既经常人类接触,又有人类结核病的高患病率。用于大规模检测结核分枝杆菌复合物(MTBC)的使用为6110-MF中的pcr,使用口服(通过绳索诱饵)和粪便(直接擦拭新鲜粪便)收集标本。首先,MTBC-IS 6110被限制的PCR在非侵入性收集的标本中得到了验证,其特异性和陈述性,然后与24个圈养的MTBC诱发的MTBC诱导的MF中的口腔和直肠拭子相比。验证后,将这些方法应用于在先前报道的MTBC感染人群中的四个棚屋MTBC(MTBC)患病率的调查。总共收集了173个诱饵绳标本和204个新鲜排定的排泄物。IS 6110 -PCR技术的检测极限为10 fg/μL,181 bp PCR扩增子与MTB H37RV基因组序列显示100%序列相似性。在被俘虏的可疑MF中的侵入性和非侵入性收集的标本之间检测揭示了两种类型的口服样本之间存在显着相关性(口腔拭子和诱饵的绳索; n = 24,r 2 = 1,r 2 = 1,p-value <0.001),但较高的新鲜伪造群体比MTCRES shand Swabs shews swabs。揭示了两种类型的口服样本之间存在显着相关性(口腔拭子和诱饵的绳索; n = 24,r 2 = 1,r 2 = 1,p-value <0.001),但较高的新鲜伪造群体比MTCRES shand Swabs shews swabs。此外,在新鲜的粪便中,MTBCS阳性自由放大的MF的比例明显高于诱饵绳(5.20%; 95%CI; 95%; 95%; 95%; 4.9-12.7%)的比例。该结果表明,通过诱饵绳索和粪便采样通过排除排泄物拭子可以用作自由态非人类灵长类动物中MTBCS检测的辅助标本。
提高作物产量和品质是应对气候变化和人口增长的永恒主题。改良作物品种的关键在于精准操控基因表达。近年来CRISPR/Cas9技术的进步使得基因敲除越来越简单,但对于与重要农艺性状相关的基因,适当调控其表达水平至关重要,完全敲除往往会导致其他方面的缺陷。此外,许多农艺性状的改良需要上调靶基因的表达。因此,开发新的精准上调或下调基因表达的方法,而无需改变基因蛋白序列或引入新的基因组片段,将大大增强作物遗传改良的技术基础。 N 6 -甲基腺苷 (m 6 A) 是真核生物 mRNA 中最丰富且可逆的内部化学修饰,分别由甲基转移酶 (写入酶)、去甲基酶 (擦除酶) 和 m 6 A 结合蛋白 (读取酶) 安装、移除和识别 ( Tang et al., 2023 )。目前,在植物中已鉴定出两种类型的 m 6 A 甲基转移酶:多蛋白复合物和单个蛋白质。该多蛋白复合体包括 MTA、MTB、FIP37、VIRILIZER (VIR)、HAKAI 和 HIZ2(HAKAI 相互作用锌指蛋白 2),可催化 mRNA 中大多数 m6A 修饰(Parker et al., 2021; Ruzicka et al., 2017; Shen et al., 2016; Zhang et al., 2022; Zhong et al., 2008)。单个蛋白质 FIONA1 在拟南芥中也表现出甲基转移酶活性(Wang et al., 2022; Xu et al., 2022),可催化 mRNA 中约 10% 的 m6A 修饰。植物中已鉴定出多种m6A脱甲基酶,它们属于Fe(II)/a-kg依赖性双加氧酶超家族,包括拟南芥AtALKBH10B和AtALKBH9B(Martinez-Perez等,2017)、水稻OsALKBH9(Tang等,2024)和番茄SlALKBH2(Zhou等,2019)。m6A可被m6A结合蛋白识别,如拟南芥中含有YTH结构域的ECT。在植物中,poly A+中m6A/A的比率
22联邦大学里约热内卢大学,巴西里约热内卢RJ,里约热内卢。信件:Adalberto studart-neto;电子邮件:adalbertostudartneto@gmail.com。披露:作者报告没有利益冲突。资金:ASN因参加Roche的顾问委员会而获得了Honararia。bjap曾担任演讲者参加由实验室Sandoz,Roche,Knight Therapeutics,Novo Nordisk和Libbs促进的专题讨论会,并参加了Roche的顾问委员会,并获得了参与Novo Novo Nordisk活动的资金支持。OVF是Biogen临床试验(Envision)的主要研究员。 EPFR获得了Proneuro的支持,以准备教育材料,从Novo Nordisk参加会议出勤以及Roche参加教育活动的支持。 PHFB已从Neuroimmun获得酬金,RMC获得了阿尔茨海默氏症协会的赠款(AARGD-21-846545),并由巴西CNPQ资助(研究生产力拨款)。 GBPF已在Lilly和Roche赞助的研讨会上获得演讲者的参与。 MLFB参加由Roche赞助的研究。 Naff因参加Roche的咨询委员会而获得了Honoraria。 lps因参加Biogen,Lilly,Lilly,Novo Nordisk E Roche的咨询委员会而获得了Honoraria,并为Aché,Apsen,Apsen,Biogen,Biogen,Knight,Libbs,Libbs,Novo Nordisk E Roche开发了持续的医学教育材料。 SMDB因参加Biogen,Novo Nordisk,Lilly,Roche和Adium的顾问委员会而获得了Honoraria。OVF是Biogen临床试验(Envision)的主要研究员。EPFR获得了Proneuro的支持,以准备教育材料,从Novo Nordisk参加会议出勤以及Roche参加教育活动的支持。PHFB已从Neuroimmun获得酬金,RMC获得了阿尔茨海默氏症协会的赠款(AARGD-21-846545),并由巴西CNPQ资助(研究生产力拨款)。GBPF已在Lilly和Roche赞助的研讨会上获得演讲者的参与。MLFB参加由Roche赞助的研究。Naff因参加Roche的咨询委员会而获得了Honoraria。lps因参加Biogen,Lilly,Lilly,Novo Nordisk E Roche的咨询委员会而获得了Honoraria,并为Aché,Apsen,Apsen,Biogen,Biogen,Knight,Libbs,Libbs,Novo Nordisk E Roche开发了持续的医学教育材料。SMDB因参加Biogen,Novo Nordisk,Lilly,Roche和Adium的顾问委员会而获得了Honoraria。lcs因参加Biogen和Lilly的咨询委员会而获得了Honoraria,以开发继续医学教育材料,并参加了由雅培,Biogen,knight和Novo Nordisk赞助的演讲者参加的演讲者;他是Passagebio临床试验的首席研究员。PC参加了由Novo Nordisk赞助的临床试验,已参加Aché,Danone,Eurofarma,Knight Therapeutics和Roche的咨询活动,并准备了由Aché,Danone,Grupo Fleury,Novo Novery,Novory Nordisk和Roche和Roche发起的持续医学教育材料和参与。RN和SMDB由巴西CNPQ(研究生产力赠款)资助。AMC,WVB,MNM,HRG,MTB,JS,EE没有宣布的利益冲突。于2024年8月1日收到;于2024年8月16日接受。
研究主题“传染病中的纳米医学:药物输送和疫苗”重点关注纳米制剂在输送候选疫苗和药物以开发针对传染病的干预方法中的作用。它包括八篇原创文章和评论文章。传染病,例如由结核分枝杆菌 (Mtb) 引起的传染病结核病 (TB),是发展中国家死亡率上升的主要原因之一。将药物输送到疾病部位是实现其治疗效果的挑战。因此,人们一直在努力使用基于脂质的纳米级药物输送系统 (NDDS) 来增强药物并使其在疾病部位可用。基于纳米载体的疗法有助于克服用于开发针对结核病的治疗干预措施的几种药物的毒性和溶解度差的问题(Rajput 等人)。多种纳米级载体及其在药物和疫苗输送中的应用,以及它们如何进化以克服与持续和目标特定输送、稳定性、耐久性、功效和生物分布相关的挑战。它们还能使药物被活性巨噬细胞吸收(Rajput 等人),而活性巨噬细胞被用作纳米载体主动和被动靶向的靶位。纳米载体与目标特定配体锚定,以持续和目标特定输送药物和抗原,从而有效输送(Limocon 等人)。这些配体锚定的纳米载体由壳聚糖制成,可局部和全身提高药物浓度,这种输送系统介导的药物输送增加了治疗结核病的潜力(Limocon 等人)。醋氯芬酸 (ACE) 是一种环氧合酶 2 抑制剂,是双氯芬酸类衍生物,用于全身炎症性自身免疫性疾病、类风湿性关节炎 (RA) 的对症治疗。部分溶解性、高亲脂性和稳定性问题对外用制剂的开发提出了挑战。因此,Garg 等人开发并表征了基于纳米结构脂质载体 (NLC) 的 ACE (ACE-NLC) 水凝胶,以实现有效的透皮给药。使用不同的脂质通过各种方法制备 NLC 微乳剂,并根据粒度、电位、表面形貌和药物包封率进行表征(Garg 等人)。将优化的 NLC 配方加入 Carbopol ® 940 凝胶中,并对该布置进行表征并与现有的市售凝胶 (Mkt-gel) 配方进行比较。体外、离体皮肤动力学建模和体内皮肤保留、渗透和稳定性证实了载有醋氯芬酸的 NLC 制剂在表皮和真皮中更好地分布皮肤的价值。这些研究结果表明,ACE-NLC 渗透到皮肤层深处,并保持皮肤
分枝杆菌属包括导致人类和动物结核病 (TB) 的结核分枝杆菌复合群 (MTBC) 的种、导致麻风病的麻风分枝杆菌,以及通常称为非典型或非结核分枝杆菌 (NTM) 的分枝杆菌种,其中包括导致布鲁里溃疡的溃疡分枝杆菌。与 MTBC 组成员不同,NTM 不是人类的专性寄生虫,而是土壤和水的正常居民,可以在天然水源和处理过的水源中找到 [1]。已正式确认的 NTM 有 200 多种 [2],其中已知约 25 种与人类疾病密切相关。一些种与引起类似 TB 症状的肺部疾病有关 [1]。由于它们的栖息地,人类每天都会接触到这些细菌。因此,必须将 NTM 病与简单的定植或临床样本污染(例如自来水)区分开来 [1,3]。与结核病不同,NTM 引起的疾病的全球流行病学尚不明确。从临床标本中分离 NTM 的病例主要见于工业化国家,患病率和发病率各不相同。基于肺部标本分离株的研究报告称,2004 年至 2006 年美国的患病率为每 100,000 人 1.4 至 6.6 人 [ 4 ],2010 年加拿大安大略省的患病率为每 100,000 人 9.8 人 [ 5 ],2020 年德国的患病率为每 100,000 人 5.8 人 [ 6 ]。也有报告称,2012 年英格兰的发病率为每 100,000 人 6.1 人 [ 7 ],2020 年德国的发病率为每 100,000 人 5.3 人 [ 6 ]。在结核病流行国家,NTM 的报告频率较低,并且主要发生在高危人群中,特别是具有易感条件或免疫力低下的人群 [ 8 ]。然而,工业化国家的经验表明,结核病负担的下降也增加了发现的 NTM 病例数。随着另一种环境下结核病防治规划的加强,我们或许也会看到类似的情况,对中低收入国家而言,诊断和临床治疗的挑战将日益加大[9]。NTM 肺病的诊断基于临床、放射学和微生物学标准[1]。在大多数资源有限的国家,基本上无法进行以实验室为基础的 NTM 检测,无法与 MTBC 相区分并确定其菌种。显微镜检查是最容易获得的技术,它将 MTBC 和 NTM 识别为抗酸杆菌 (AFB),但无法区分它们。自 2010 年以来,世界卫生组织 (WHO) 已推荐使用 GeneXpert MTB/RIF(Xpert)等快速分子检测作为结核病诊断的初始检测,该检测具有更高的灵敏度和特异性 [10]。该检测仅可识别样本中是否存在 MTBC 菌种。如果 AFB 阳性痰液样本经 Xpert 检测呈 MTBC 阴性,则可能提示感染 NTM [11]。在马里,已报道过 NTM 感染病例,特别是在抗结核治疗失败或结核病治愈后复发的患者中 [ 12 ]。在该国引入 Xpert 后,AFB 涂片阳性而 Xpert 检测阴性的疑似 NTM 感染病例报告更频繁 [ 13 ]。