将两 (2) 个 SPC810e 控制器模块安装到垂直 DIN 导轨上。将 SPC810e 控制器模块连接到冗余 HN800 I/O 总线。将 SPC810e 控制器模块连接到冗余 CW800 对等总线。为 PN800 控制网络提供四 (4) 个用于 100/1000 MB 以太网的 RJ45 连接器。
Johannes Bussmann 博士将成为 MTU Aero Engines AG 的新任首席执行官 | 监事会任命 Lars Wagner 的继任者,后者将在任期结束后加入空客 | TÜV Süd AG 现任首席执行官将在 2025 年上任 | 在汉莎技术公司拥有 20 多年的行业经验,其中包括 7 年的首席执行官 慕尼黑,2024 年 12 月 18 日 | Johannes Bussmann 博士(55 岁)将成为 MTU Aero Engines AG 的新任首席执行官。这是这家 DAX 上市公司监事会在昨天晚上的特别会议上一致决定的。合同期限为五年。 Johannes Bussmann 预计将在 2025 年上任。他目前是 TÜV Süd AG 的首席执行官。在此之前,这位拥有航空航天工程博士学位的航空航天工程师他自 2024 年起担任 MTU 监事会成员,现在将接替拉尔斯·瓦格纳 (Lars Wagner) 掌舵公司。10 月底,瓦格纳宣布,他将在任期至 2025 年底后不再担任额外任期,以接受空客商用飞机部门首席执行官的新职业挑战。布斯曼将辞去 MTU 监事会职务。“我们很高兴,约翰内斯·布斯曼是一位与 MTU 关系密切的杰出航空专家,他将接任首席执行官一职,”MTU Aero Engines AG 监事会主席戈登·里斯克 (Gordon Riske) 表示。“在 2024 年创纪录的一年之后,他将继续实现公司的盈利增长和转型,并成功带领 MTU 走向未来。”“我要感谢监事会对我的信任,我期待有机会与执行委员会一起继续书写 MTU 的成功故事,”布斯曼表示。 “公司拥有成功的商业模式、极好的前景和以价值观为基础的优秀文化。成长、变革和价值观齐头并进,对我来说非常重要。” Johannes Bussmann 拥有亚琛工业大学航空航天工程学位和燃烧技术博士学位。他于 2023 年初接任慕尼黑 TÜV Süd AG 首席执行官。在此之前,他在汉莎技术公司担任过各种管理职位超过二十年,自 2012 年起担任首席人力资源和生产官,自 2015 年起担任首席执行官。在这个职位上,他在 2017 年在波兰热舒夫成立 EME Aero 中发挥了关键作用,这是 MTU 和汉莎技术公司之间的发动机 MRO 合资企业。 “Johannes Bussmann 是一位经验丰富的航空业专业人士,多年来一直是 MTU 值得信赖的顾问。我们彼此了解、尊重和欣赏,我们将确保我们之间的顺利过渡,”首席执行官 Lars Wagner 补充道。瓦格纳的职责移交给继任者的具体日期将在适当时候公布。--------------------------------------------------- 关于 MTU Aero Engines --- ---------------------------------------------- MTU Aero Engines AG 是德国领先的发动机制造商。该公司在低压涡轮机、高压压缩机、涡轮中心框架以及制造工艺和维修技术方面处于技术领先地位。在商业 OEM 业务中,该公司在高科技产品的开发、制造和营销方面发挥着关键作用
对保障措施和(定量)分析的需求我们认为,需要几个保障措施作为SDAC 15分钟MTU Go-live需要满足的前提条件(目前尚未满足这些条件):•SDAC算法的保险,即SDAC算法能够适应复杂的块(链接,柔性MTU订单,包括今天的参数),包括该订单的相关订单,包括今天的参数) •SDAC算法将能够容纳多种MTU产品的保险(通过嵌入ALGO中的CPM功能,或通过用户界面促进的块订单)并处理隐含的增加复杂性,以块订单数量来处理隐含的复杂性; •对PRB的影响评估,以确保这些评估不会大大增加; •确保行李不会基于不均匀的定价; •确保算法运行的持续时间不会增加+15/20分钟以外的时间(17分钟),并且SDAC之后的截止日期和操作过程都将相应地适应。在没有这些保障措施的情况下,我们认为SDAC 15分钟MTU GO-LIVE非常冒险,应该受到质疑,因为这可能不利于DA市场的适当运作,以评估影响的影响并监督15分钟MTU变更的实施,应审查所有MTU的问题,并整合所有参与者的问题(I.E.E. e.e.不仅专注于Nemos计算挑战)。因此,我们呼吁对产品设计的选择及其在2023年进行的后果进行深入研究,包括利益相关者咨询(即使是法规的不要求),并定期就做出决定的状态和可见性进行会议。
最重要的高科技工艺包括激光雕刻,用于在高压涡轮叶片上制造冷却空气孔,以及自适应铣削、拉削、摩擦焊接和精密电化学加工 (PECM)。增材制造工艺也越来越重要。其中之一是选择性激光熔化,它几乎不需要传统工具就可以生产或修复复杂的部件。增材工艺的其他优势包括显著更大的设计自由度、更短的生产时间、更快的创新周期、更轻的附加功能部件以及更低的开发成本。MTU 于 2013 年将增材工艺引入其运营,在发动机生产方面取得了突破:它是首批在工业规模上使用此类方法制造部件的公司之一。
我们希望我们的 ecoRoadmap 能够为我们的现场运营实现我们的清洁空气发动机议程长期以来在我们产品开发中所代表的目标:航空业的气候转型。零排放飞行是驱动我们前进的愿景。这是一个长期目标,也符合《巴黎协定》,在这方面,我们在 2020 年也取得了进展。例如,我们致力于氢动力燃料电池的概念,并成立了自己的开发团队,该团队正在努力为原型机的首飞做准备。我们预计这将在未来几年内实现。此外,我们正在追求一种推进系统的概念,该系统采用热交换器来利用发动机废气流中的能量,适合为长途飞机提供动力。在我们看来,可持续航空燃料对于航空业的绿色未来同样重要;这些燃料可以与现有的基础设施和发动机架构结合使用,以减少对气候有影响的排放。
GTF 推进系统的独特之处在于,它在风扇和低压轴之间配备了一个减速齿轮箱,驱动风扇的低压压缩机和低压涡轮就位于该齿轮箱上。齿轮箱使大直径的风扇旋转得更慢,同时使低压压缩机和涡轮旋转得更快。