摘要:小鼠尿液中含有人尿中未发现的主要尿蛋白(MUP)。因此,即使健康的小鼠也表现出蛋白尿,与健康的人不同,将小鼠用作人类疾病的模型变得具有挑战性。也未知尿液分析的量子是否可以精确地测量含有MUP的尿液中的蛋白质浓度。为了解决这些问题,我们通过使用Cas9蛋白和两个指导RNA去除MUP基因簇来产生MUP敲除(MUP-KO)小鼠,并表征了这些小鼠中的尿蛋白。,我们使用蛋白质定量试剂盒和量油盒测量了MUP-KO和野生型小鼠中的尿蛋白浓度。我们还使用SDS-PAGE和二维电泳(2DE)检查了尿蛋白组成。MUP-KO小鼠(17.9±1.8 mg/dl,平均值±SD,n = 3)的尿蛋白浓度明显低(P <0.001)(p <0.001)(p <0.001)。这种差异并未反映在量强壮的值中,这可能是由于对MUP的敏感性低。这表明用量油量有限,可以精确地测量MUP的变化。SDS-PAGE和2DE证实,像人类一样,MUP-KO小鼠的尿液中没有MUP,而野生型小鼠的尿液中有大量的MUP。MUP在2DE中的掩蔽效果将使尿蛋白,尤其是低分子量蛋白的明确比较。因此,MUP-KO小鼠可以为人类尿液分析提供有用的模型。关键词:基因组编辑,敲除模型,主要尿蛋白,尿液分析
电诊断医学中最困难的地区[1]。从理论上讲,具有纯净电势的神经性EMG,正锋利的波,高振幅和持续时间运动单位电位(MUP)和减少的干扰模式,应与含有较小的短效率的较小的,短效率的多重浓度和全部干扰模式的肌病明显区分。实际上,定性EMG分析的诊断产率是异常/肌病和神经性/肌病之间的区别,令人失望的很低。在过去的几十年中,已经开发了几种定量EMG(QEMG)方法,例如转向振幅分析,以提高EMG的诊断产率,但是到目前为止,各种QEMG技术的敏感性和特异性都与视觉检查相似[2],[3]。同样,另一种称为聚类指数方法的定量技术对神经源性产生的敏感性为92%,对肌性患者的敏感性为61%[4]。对纳入体肌炎患者(IBM)(肌病)的EMG解释特别具有挑战性,因为它可能包含肌病性和神经起源特征[5]。由于IBM也可能在临床上模仿运动神经元疾病,因此对EMG的不适当解释可能导致错误的诊断。对错误标记的IBM患者的回顾性研究发现,常规EMG通常指向神经发生障碍:它显示出纯正和正尖波,以及大多数错误标记患者的多重多重性长期神经源性MUP的过量[6]。这是非常不幸的,因为肌萎缩性侧索硬化症(ALS)是一种疾病,是一种进行性致命疾病,而预期寿命在IBM中并没有显着影响[7]。大多数QEMG方法已经出版了几十年前,是基于关于MUP形态和生理学的假设。计算机处理能力和机器学习技术的最新进展实现了一种大数据方法,该方法可以处理大量功能,而没有任何关于信号性质的基本假设。我们以前已经表明,这种方法是为汽车行业开发的,但适用于脑电图(EEG)信号,可以
contramyl XR是经批准的扩展释放(ER)哌醋甲酯,可用于治疗儿童和青少年(6-17岁),成人(18-65岁)符合DSM-IV或DSM-IV或DSM-V标准ADHD。与ER渗透释放的口服系统(Oros)哌醋甲酯相比,Contramyl XR使用多单位颗粒系统(MUP),因为经过修改的,受控的释放系统已被证明可以叠加相同的双相释放的甲基苯甲酯。多单位颗粒系统是两个最广泛使用的输送系统之一,用于连续和受控的哌醋甲酯,另一个是OROS。其他一些ER的ER口服递送系统包括球形口服药物吸收系统(例如,sodas,例如Ritalinla®),修改后的释放颗粒(例如medikinetMr®),Oros(例如Concerta®,Neucon®,Mefedenil®,UnicornMPH®),亲水基质释放系统(例如radd®)和ER膜涂层片(例如Acerta®)。