一种具有成本效益的方法,可以改善碳纤维增强聚合物(CFRP)预报复合材料的物理和机械性能,在该复合材料中,在传统的CFRP Prepreg复合材料的层次之间合成了电纺多多壁碳纳米管(MWCNT)/环氧纳米纤维。通过优化的静电纺丝过程成功产生了与MWCNT一致的环氧纳米纤维。纳米纤维直接沉积到预处理层上,以改善粘附和界面粘结,从而增加强度和其他机械性能的改善。因此,高压力性方案的层间剪切强度(ILSS)和疲劳性能分别增加了29%和27%。几乎看不见的撞击损伤(BVID)能量显着增加了45%。由于CFRP层之间高度导电MWCNT网络的存在,热电导率也得到了显着增强。所提出的方法能够在预处理的间层间界面上均匀地沉积MWCNT,以增强/增强CFRP性质,以前尚未证明,由于在环氧系统中由随机定向的MWCNT引起的高树脂粘度。
纸张出版日期:2024年6月15日摘要 - 机械能是一种多功能且易于使用的绿色能源,越来越多地通过创新的柔性压电纳米生成器(F-PNG)来供电小型设备。这些设备使用轻巧的材料(例如钛酸钡(BATIO3),聚二甲基硅氧烷(PDMS)和多壁碳纳米管(MWCNTS)将机械能转换为电力。在此设计中,将BATIO3纳米颗粒嵌入了带有PDM和MWCNT的复合膜中,并夹在两个铜电极之间。为这项研究合成的Batio3/PDMS/MWCNT复合PENGS通过周期性的循环打击产生约8V的输出电压。这与没有MWCNT掺杂的PENG相比,这一增加约为16%。此外,在最佳MWCNT wt。%处的短路电流在约5.22 µA处峰值。可以通过0.1μF的储能电容器有效捕获产生的电能,然后将其用于为两个商用红色LED供电。这些发现表明,BATIO3/PDMS/MWCNT复合材料作为无铅压电纳米生成剂具有重要的希望。索引术语 - 柔性压电纳米生成器,机械能,能量收集,钛酸钡(BATIO3),聚二甲基硅氧烷(PDMS),多壁碳纳米管(MWCNTS)。
基于核酸调节细胞活性的治疗方法最近引起了人们的注意。这些分子来自复杂的生物技术过程,需要有效的制造策略,高纯度和精确的质量控制才能用作生物制药。基于核酸的生物治疗剂制造的最关键和最耗时的步骤之一是它们的纯化,这主要是由于提取物的复杂性。在这项研究中,描述了一种简单,有效且可靠的方法,用于分离和阐明复杂样品的质粒DNA(pDNA)。该方法基于使用原始碳纳米管(CNT)的选择性捕获RNA和其他杂质的选择性捕获。研究了带有不同直径的多壁CNT(MWCNT),以确定其吸附能力,并解决其相互作用和区分核酸之间的能力。结果表明,MWCNT优先与RNA相互作用,并且较小的MWCNT具有较高的吸附能力,如较高的特定表面积所预期的那样。总体而言,这项研究表明,与初始水平相比,MWCNT显着降低了杂质(即RNA,GDNA和蛋白质)的水平约为83.6%,从而使溶液中澄清的pDNA在整个恢复过程中保持稳定性。此方法促进了治疗应用中pDNA的预纯化。
相变材料(PCM)是应对可再生能源间歇性的有希望的灵丹妙药,但其热性能受到低导热率(TC)的限制。这项开创性的工作研究了有机PCM富集的表面修饰和未修饰的多壁碳纳米管(MWCNT)对低温热储能(TES)应用的潜力。在25°C下,功能化和未官能化的MWCNT增强了PCM的增强,分别增强了158%和147%的TC,但在25°C时48 h降低了48 h的TC值在48 h时下降了52.5%,而MWCNT PCM的TC值则在25°C时降低了52.5%。对多达200个热循环的DSC分析证实,表面修饰和未修饰的MWCNT对纳米增强PCM的峰值熔化和冷却温度没有重大影响,尽管在熔融和结晶中分别在融化和结晶中分别略有下降7.5%和7.7%,但在包含的融化和结晶中均在融化和结晶中均具有功能。此外,功能化的MWCNT掺入PCM已导致特定的热容量增加23%,最佳熔融焓值为229.7 J/g。此外,使用这些纳米增强PCM的PCM,没有超冷,没有相位分离和较小的相变温度。最后,在FT-IR光谱中未看到纳米PCM的化学相互作用,并且均掺入了功能化和未经处理的MWCNT。很明显,基于MWCNT的功能化PCM具有更好的热稳定性,它为改善建筑物中的热量存储和管理能力提供了有希望的替代方案,有助于维持能力和节能的建筑物设计。
本文介绍了一种经济有效的方法来改善碳纤维增强聚合物 (CFRP) 预浸料复合材料的物理和机械性能,其中合成电纺多壁碳纳米管 (MWCNT)/环氧纳米纤维并将其加入到传统 CFRP 预浸料复合材料的层之间。通过优化的电纺丝工艺成功生产出 MWCNT 取向环氧纳米纤维。纳米纤维直接沉积在预浸料层上以实现改善的粘附性和界面结合,从而增加强度并改善其他机械性能。因此,高应力状态下的层间剪切强度 (ILSS) 和疲劳性能分别提高了 29% 和 27%。几乎看不见的冲击损伤 (BVID) 能量显著增加,最高可达 45%。由于 CFRP 层之间存在高导电性的 MWCNT 网络,热导率和电导率也显著提高。所提出的方法能够在预浸料的层间界面处均匀沉积高含量的 MWCNT,以增强/提高 CFRP 性能,这在以前是无法实现的,因为环氧体系中随机取向的 MWCNT 会导致树脂粘度高。
摘要基于碳纳米 - 互连进行比较无线电频率(RF)和串扰分析,该互连是基于有效的π-类型等效的多壁碳纳米管(MWCNT)和堆叠的多层含量nanoribbons(MWCNTS)和堆叠的多层含量的nanoribbons(mwcnts)。使用HSPICE在14 nm节点处使用HSPICE进行全局级纳米互连提取。RF性能,而串扰性能是根据串扰诱导的延迟和平均功耗来分析的。与CU,纳米管和MWCNT相比,皮肤深度的结果表明,对于ASF 5掺杂的Zag ZAG MLGNR,在较高频率下,皮肤深度降解的显着明显影响。转移增益结果明确表明,ASF 5掺杂的MLGNR表现出极好的RF行为,分别显示出比MWCNT和铜(CU)的10倍和20倍的改善。此外,与Cu和MWCNT相比,ASF 5掺杂的MLGNR的3 dB带宽计算表明18.6-和9.7倍倍增强。在ASF 5掺杂的MLGNR的串扰诱导的相位延迟中获得了显着的重新构度,其延迟值比CU和MWCNT的延迟值低84.7%,比60.24%。此外,ASF 5-掺杂的MLGNR呈现最佳能量 - 延迟产品的结果,其值比其CU和MWCNT对应物的98.6%和99.6%的改善,全球长度为1000 µm。
在本研究中,证明了使用α-托泊酯琥珀酸酯(α -TOS)和硫酸软骨素A(CSH)(α -TOS - TOS - CSH - MWCNTS)束缚的新型多壁碳 - 纳米管(MWCNT)。阿霉素(DX)进一步加载以增强抗癌治疗潜力。开发的系统允许在三阴性乳腺癌(TNBC)特定细胞上精确靶向过表达的CD44受体。有趣的是,与非CSH轴承相比,发现α-TOS-CSH-MWCNTS/DX具有更大的细胞定位,揭示了更大的特异性。Kiton Red 620分析显示,MDA-MB-231细胞增殖的显着降低(P <0.001),GI 50值0.791±0.015。使用膜联蛋白V/PI分析的凋亡研究显示,与其他配方相比,当用α-TOS-CSH-MWCNTS/DX处理α-TOS-CSH-MWCNTS/DX时,MDA-MB-231细胞凋亡(53.40±3.32%; P <0.005)。结果表明,CSH,α -TOS和DX的组合可以有效,安全地用于治疗TNBC。
尽管癌症治疗取得了显著进展,但转移性疾病仍然是癌症相关死亡的主要原因。多壁碳纳米管 (MWCNT) 可以进入组织和细胞,并以仿生方式干扰细胞骨架纳米丝的动力学。这赋予它们与微管结合化疗(如 Taxol ® )相当的内在抗肿瘤作用。在本研究中,我们的重点是探索氧化 MWCNT 在选择性靶向血管内皮生长因子受体 (VEGFR) 方面的潜力。我们的目标是评估它们通过诱导对癌症和肿瘤微环境细胞的抗增殖、抗迁移和细胞毒性作用来抑制转移性生长的有效性。我们的研究结果表明,在静脉注射靶向可生物降解的 MWCNT 后,恶性黑色素瘤肺转移显著减少 80% 以上,动物整体福利显著改善。此外,这些纳米材料与传统化疗药物 Taxol ® 的结合使抗转移效果显著提高 90%。这些结果凸显了这种联合治疗方法对抗转移性疾病的巨大潜力,并且至关重要,因为转移每年导致近 60,000 人死亡。
传感器材料配置响应时间(毫秒)循环参考文献 LMs-TPE 管状 50 3500 [S12] 垂直石墨烯 (VGr) 堆叠 180 1000 [S13] MXene/TiS 2 交错 1000 至 5000 2500 [S14] MWCNTs/PVC 堆叠 110 2500 [S15] MXene/CF 交错 50 1000 [S16] PI/CNT 气凝胶堆叠 50 1000 [S17] Ti 3 C 2 T x -MXene 堆叠 98 10,000 [S18] PEDOT-CNT@rGO 交错 0.9 2500 本研究
[31] K.A.M.Attia,A.H。Abdel-Monem,A.M。 Ashmawy,A.S。 Eissa,A.M。 Abdel-raoof,高度敏感的尖晶石纳米晶体锌铬铁矿的构建和应用装饰了多壁碳纳米管修饰的碳糊电极(Zncr 2 O 4 @MWCNT/CPE)用于电化学测定甲藻酸苯甲酸苯甲酸酯及其替代剂的苯甲酸酯和绿色化学评估:绿色化学评估: 12(2022)19133– 19143。 https://doi.org/10.1039/d2ra02685f。Attia,A.H。Abdel-Monem,A.M。 Ashmawy,A.S。 Eissa,A.M。 Abdel-raoof,高度敏感的尖晶石纳米晶体锌铬铁矿的构建和应用装饰了多壁碳纳米管修饰的碳糊电极(Zncr 2 O 4 @MWCNT/CPE)用于电化学测定甲藻酸苯甲酸苯甲酸酯及其替代剂的苯甲酸酯和绿色化学评估:绿色化学评估:12(2022)19133– 19143。 https://doi.org/10.1039/d2ra02685f。12(2022)19133– 19143。https://doi.org/10.1039/d2ra02685f。https://doi.org/10.1039/d2ra02685f。