背景:红外 (IR) 成像仪在中波红外 (MWIR) (3-5 um) 和长波红外 (LWIR) (8 – 12 um) 中工作,使海军和海军陆战队能够在所有照明条件(白天和夜晚)以及具有挑战性的大气条件下看到远距离物体。通常,这些高性能成像仪的探测器必须冷却到 45 K 到 120 K 之间,具体取决于波段。这是为了使它们能够在背景受限红外光子 (BLIP) 条件下工作。近年来,半导体材料和设计方面取得了进展,以提高该工作温度。在 LWIR 波段中用于非制冷红外成像的第二类探测器是微测辐射热计。虽然这种设计确实可以在室温下运行,但它从根本上受到材料电导率和热导率特性的限制。对于非制冷微测辐射热计,它们的响应时间受到进一步限制,并且通常必须在每个成像帧上停留更长时间
量子级联激光(QCL)系统已经成熟,并且在新一代产品的先锋范围内,这些产品支持军事应用,例如红外对策(IRCM)(IRCM)和目标。飞机平台的苛刻产品需求包括降低尺寸,重量,功耗和成本(SWAP-C)扩展到便携式电池供电的手持产品。QCL技术在整个中波(MWIR)和长波(LWIR)红外运行,以提供利用现有热成像摄像机的新功能。除了对飞机平台的适用性外,QCL产品非常适合满足操作员对小型,轻巧的指针和信标功能的需求。高功率,轻巧,电池操作的设备的现场测试已在一系列空气和地面应用中证明了它们的实用性。本演讲将介绍QCL技术以及由其启用的防御和安全产品和功能的概述。本演讲还将概述与基于QCL技术相关的产品相关的广泛环境和性能测试。
圣巴巴拉红外公司 (SBIR) 正在生产高性能 1,024 x 1,024 大尺寸电阻发射阵列 (LFRA),用于下一代红外场景投影仪 (IRSP)。LFRA 要求是通过与三军红外场景投影仪工作组的密切合作以及通过 OSD 中央 T&E 投资计划 (CTEIP) 和第一阶段美国海军小型企业创新研究 (SBIR) 合同赞助的详细贸易研究而制定的。CMOS 读入集成电路 (RIIC) 由 SBIR 和 Indigo Systems 根据小型企业创新研究 (SBIR) 合同设计。性能和功能包括 750 K MWIR 最大表观温度、5 毫秒 (10-90%) 辐射上升时间、200 Hz 全帧更新和 400 Hz 窗口模式操作。 2002 年中期将制造并分析 10 个 8 英寸 CMOS 晶圆,随后在 2002 年末制造发射器。本文讨论了阵列性能、要求流程、阵列设计、2 x 2 英寸 CMOS 设备的制造以及后续 RIIC 晶圆测试和发射器像素制造的计划。
ODF_01 Pushing the Limits of Deflectometry: Achieving Interferometric Accuracy in Large Optics Testing Oral Presentation ODF_03 Performance Evaluation of Astronomical Images Using Noise Characterization Oral Presentation ODF_04 Optical Design of Telecentric Eyepiece for Optically Fused Imagers Oral Presentation ODF_10 Miniaturized Wide Field of View MWIR Optics for Missile Coordinate Determination Oral Presentation ODF_12基于光的实验方法,以估计1D亚波长度聚合物相位栅格的大凹槽深度口腔呈递ODF_24 ODF_24关于VNIR镜头组装性能的比较研究,并具有球形和非球形设计口腔设计HOL_02衍射通用型态度差异差异差异差异 - 数字重建算法用于数字在线全息口腔呈现HOL_09 HOL_09具有高阶复合涡流的光场生成口服呈现HOL_12 HOL_12平行相移数数字全息图和图像处理,用于语音安全性hol_16使用GS Algority holgor_99 Vortex Fresnel镜头相掩码和线性典型转换口服口头呈递
圣巴巴拉红外公司 (SBIR) 正在生产高性能 1,024 x 1,024 大尺寸电阻发射器阵列 (LFRA),用于下一代红外场景投影仪 (IRSP)。LFRA 要求是通过与三军红外场景投影仪工作组的密切合作以及通过 OSD 中央 T&E 投资计划 (CTEIP) 和第一阶段美国海军小型企业创新研究 (SBIR) 合同赞助的详细贸易研究而制定的。CMOS 读入集成电路 (RIIC) 由 SBIR 和 Indigo Systems 根据小型企业创新研究 (SBIR) 合同设计。性能和功能包括 750 K MWIR 最大表观温度、5 毫秒 (10-90%) 辐射上升时间、200 Hz 全帧更新和 400 Hz 窗口模式操作。2002 年中期将制造并分析 10 个 8 英寸 CMOS 晶圆,随后在 2002 年末制造发射器。本文讨论了阵列性能、要求流程、阵列设计、2 x 2 英寸 CMOS 器件的制造以及后续 RIIC 晶圆测试和发射器像素制造的计划。
强场物理中许多有趣的实验都需要产生长波长激光脉冲[1-4]。最近,在 1 kHz 或更高重复率下工作的少周期、载波包络锁相、mJ 级短波红外 (SWIR,1.4-3 µ m) 激光器方面取得了进展,推动了水窗口 (282 至 533 eV) 中阿秒 X 射线源的开发[5]。利用中波红外 (MWIR,3-8 µ m) 驱动激光器已经证明了光谱截止超过 1 keV 的高次谐波产生[6]。3.5-5 µ m 大气透射窗口内的高峰值功率 (100 千兆瓦级) 脉冲能够通过克尔透镜效应在空气中自聚焦形成细丝[7,8];这种脉冲是国防应用的理想选择,因为它们可以以极高的精度和最小的衰减对目标造成最大伤害。由于在 MWIR 波长区域工作的增益介质有限,光参量啁啾脉冲放大(OPCPA)成为最佳方法。1 µ m 激光器泵浦的氧化物非线性晶体,如砷酸钛钾(KTA),能够在 3.9 µ m 波长下产生 30 mJ、80 fs、20 Hz 脉冲[9]。2 µ m 泵浦源使基本可能的上限转换效率翻倍,并且可以使用非线性度更大的非氧化物晶体,如 ZnGeP 2(ZGP),d 36 = 75 pm/V [10 – 12]。ZGP 的热导率为 36 W/(m·K),是 KTA 的 20 倍,对于高重复率/高平均功率操作至关重要。在用 1.94 µ m Tm:光纤激光器泵浦时,Ho:YLF 能够将 2 µ m 皮秒脉冲放大到几十毫焦耳[13-15]。Ho 3 +的 5 I 8 和 5 I 7 流形分别包含 13 个和 10 个能级,如图 1 所示[16]。2.05 µ m 脉冲的放大归因于模拟的上激光能级 N 2 (在 5153 cm − 1 处)和下激光能级 N 1 (在 276 cm − 1 处)之间的发射跃迁。由于基态 N 0 (在 0 cm − 1 处)和下激光能级之间的能量差很小,Ho:YLF 被认为是准三能级增益介质。如图 1 所示,相关激光能级的粒子数随温度而变化,因此 Ho:YLF 等准三能级放大器的增益在很大程度上取决于温度。高能皮秒 Ho:YLF 激光器通常基于啁啾脉冲放大 (CPA)。在产生超过 20 mJ 能量的 2 µ m 皮秒 CPA 激光器中,前置放大器的脉冲由功率放大器增强。最终输出能量由输入脉冲能量和增强器的增益决定。最近,在 2016 年 11 月 1 日展示了一种使用再生放大器和两级增强器放大输出 56 mJ 的 Ho:YLF CPA 系统。
半导体激光器的进度IEEE光子学期刊将发布一个专门针对半导体激光器进展的功能部分。本期的目的是收集在第2024 IEEE 29届国际半导体激光会议(ISLC)上发表的论文的扩展版本,并且还向未在ISLC 2024上提出的半导体激光器主题开放的原始手稿。对半导体激光器的研究是一个充满活力的领域,涵盖了广泛的主题:新材料,新结构,也基于量子效应,紧凑和功率缩放的集成技术,新的建模和设计方法。半导体激光器中的创新对于许多应用领域,例如经典和量子通信,量子级别的信息处理,计算,传感,环境监测,工业过程控制和生物 - 光子学至关重要。This Feature Section welcomes contribution on the latest developments in: semiconductor lasers, semiconductor optical amplifiers, and light emitting diodes, including: semiconductor lasers and amplifiers, surface emitting lasers (VCSELs, VECSELs, and PCSELs) and related devices, photonic band-gap and microcavity lasers, topological lasers, grating controlled lasers, multi-segment and ring lasers, quantum cascade, and interband cascade lasers, sub-wavelength scale nano-lasers, MWIR, LWIR, and THz sources, InP, GaAs and GaSb materials, quantum dot lasers, high power and high- brightness lasers, GaN and ZnSe based UV to visible LDs and LEDs, Light emitting diodes (LEDs) and微型领导,半导体激光器的应用和具有半导体激光器的光子整合电路。鼓励基本研究和与应用相关的贡献。提交从2024年10月7日开始,提交手稿的截止日期为2025年2月14日。应该在https://ieee.atyponrex.com/journal/pj-ieee上在线进行,其中符合IEEE Photonics Journal Standards的论文。所有提交将根据期刊的正常程序进行审查。请确保将纸类型标记为半导体激光器中的进度,而不是原始纸张和技术主题为#06(焦点问题)。作者可以联系下面的任何人,以获取更多信息或网站https://www.photonicssociety.org/publications/photonics-journal/call-for-papers。客人编辑Mariangela Gioannini Politecnico Di Torino,意大利/主要客座编辑Erwin Bente Eindhoven教授,荷兰/访客编辑Matt Dummer Aeluma Inc. Martohiro Editor laver insimer Editor linc linc linc linc. Yvette Charles PJ编辑办公室IEEE/Photonics Society 445 Hoes Lane Piscataway,NJ 08854美国电话:732-981-3457电子邮件:y.charles@ieee.org
许多跨学科科学研究都需要对野火进行遥感,包括野火对生态的影响。几十年来,这项研究一直受到空间分辨率不足和探测器在短波和中波红外波长处饱和的阻碍,而高温 (>800 K) 表面的光谱辐射最为显著。为了解决这个问题,我们正在开发一种紧凑型高动态范围 (HDR) 多光谱成像仪。紧凑型火灾红外辐射光谱跟踪器 (c-FIRST) 利用数字焦平面阵列 (DFPA)。DFPA 由最先进的高工作温度屏障红外探测器 (HOT-BIRD) 和数字读出集成电路 (D-ROIC) 混合而成,具有像素内数字计数器以防止电流饱和,从而提供动态范围 (>100 dB)。因此,DFPA 将能够对温度变化范围从 300 K 到 >1600 K(燃烧的火灾)的目标进行非饱和高分辨率成像和定量检索。凭借从 500 公里的标称轨道高度解析地球表面 50 米级热特征的分辨率,一次观测即可捕获野火的全部温度和面积以及冷背景,从而增加每个返回字节的科学内容。使用非饱和 FPA 是一种新颖的做法,它克服了以前高辐射值使 FPA 像素饱和(从而降低了科学内容)的问题,并展示了遥感方面的突破性能力。因此,c-FIRST 适用于量化野火排放,这对于确定其对全球生态系统的影响至关重要。 c-FIRST 的 FPA 采用 InAs/InAsSb HOT-BIRD 外延材料制作,像素间距为 20 m,探测器阵列为 1280x480 格式,并与模拟 DROIC 混合。DFPA 的 50% 截止点为 ~4.5um,在 140K 工作温度下,整个 QE 光谱范围内测得的外部 QE~50%。我们将积分时间固定在 6 毫秒,以便在以 150 Hz 帧速率观察正常 300K 背景场景时在 MWIR 波段获得良好的灵敏度。对于标准模拟 ROIC,探测器像素在目标温度 ~700 K 时很容易饱和。当 D-ROIC 在 16 位模式下运行时,我们可以将饱和温度显著提高到 ~1100 K。当 D-ROIC 在超 HDR 32 位模式下(28 万亿电子阱深度)运行时,即使对于 1600 K 目标,探测器也不会接近饱和。火灾遥感的一个关键指标是可探测的最小目标尺寸。c-FIRST 可将可探测火灾的最小尺寸提高一个数量级,这主要是由于非饱和探测器的空间分辨率比 GOES 上的高级基线成像仪等当前维修仪器更高,同时功率、尺寸和重量也更低。c-FIRST 空中飞行计划于 2024 年火灾季节进行仪器测试和验证。我们预计 c-FIRST 太空验证将基于 2026 年或之后的空间技术验证机会。