摘要:无人机系统 (UAS) 航空电子设备的不断发展,为飞行器和地面任务控制带来了更高水平的智能化和自主性,从而催生了新的有前途的操作概念。一对多 (OTM) UAS 操作就是这样一个概念,它的实施需要在多个领域取得重大进展,特别是在人机界面和交互 (HMI 2 ) 领域。在 OTM 操作期间测量认知负荷,特别是心理工作负荷 (MWL) 是可取的,因为它可以减轻自动化程度提高带来的一些负面影响,通过提供动态优化航空电子 HMI 2 的能力,实现自主飞行器和人类操作员之间的最佳任务共享。本文提出的新型认知人机系统 (CHMS) 是一种信息物理人 (CPH) 系统,它利用了经济实惠的生理传感器的最新技术发展。该系统专注于生理感知和人工智能 (AI) 技术,这些技术可以支持 HMI 2 的动态调整,以响应操作员的认知状态(包括 MWL)、外部/环境条件和任务成功标准。然而,仍然存在重大的研究空白,其中之一涉及一种可以应用于 UAS 操作场景的确定 MWL 的普遍有效方法。因此,在本文中,我们介绍了一项关于测量的研究结果
3。意图陈述在NHS中具有高质量采购的重要性对于患者护理至关重要,现在采购被认为是提供高质量服务不可或缺的一部分。采购功能的执行方式以及如何看待它们已经改变了 - 团队处理订单的过时形象不再适用,现在该功能在交付信任目标中起着关键和战略性的作用。通过意识到有强大而积极主动的采购部门的必要性,这在COVID-19-19大流行期间得到了增强。该策略的目的是概述行动计划,以确保MWL在MWL采购服务的当前位置发展,并致力于在高性能的信任下建立更高的性能采购部门。这种新的采购策略将旨在在未来四年中实现以下内容:
摘要 — 在本文中,提出了一种自动识别心理工作量相对变化的新解决方案。使用可穿戴传感器收集 26 名人类受试者在执行三个难度级别 n ∈{1, 2, 3} 的 n-back 任务时的 EEG、EDA、PPG 和眼动追踪数据。目标是通过将当前信号窗口与前一个信号窗口进行比较来识别心理工作量是增加、减少还是稳定。所提出的三类分类器主要使用 CNN 层和新颖的合并层,该合并层系统地捕获两个检查窗口的局部段之间的相互作用。事实上,它受到了基于 Transformer 和 CNN 的网络在时间序列分类方面的竞争成功的启发。在所提出的解决方案利用了 CNN 网络的效率的同时,由于提出了合并层,它还与 Transformer 类似,具有捕获序列局部事件之间相互作用的能力。在准确性方面,实验结果表明,在眼球方向、PPG 和 EEG 数据上,所提出的解决方案优于经典 CNN、BiLSTM 和 transformer 网络,而在眼球瞳孔直径和 EDA 数据上,其性能与 transformer 网络相当。实验结果显示,每个时期的平均训练时间明显小于 transformer 和 BiLSTM 网络。索引术语——心理工作量 (MWL)、深度神经网络 (DNN)、时间序列分类 (TSC)、眼动追踪、光电容积图 (PPG)、脑电图 (EEG)、皮肤电活动 (EDA)、n-back 任务、transformer 神经网络、卷积神经网络 (CNN)。