1引言具有分层结构的二维材料,例如石墨烯和过渡金属二分法元素正在发展的技术,并且在计算和电路制造工业中的数字应用1-3。在具有修改功能特性的半导体中将这些材料从笨重到单层的限制。单层材料对研究人员来说是有吸引力的候选人。诸如MOS 2和WS 2之类的大量材料具有间接的带结构,而其单层是直接的,宽4-7。通过应变工程,结构和电气行为可以调整。电子迁移率和有效质量是电子设备的关键工具。散装或2D材料的外观外观在实验中产生很多菌株。这些发现表明了新的物理和化学能力包括电气,光学和磁性8。第一原理计算揭示了大小,形状和声子之间的联系
引言23自2004年24日成功去除石墨烯1以来进行的二维(2D)材料的积极研究导致发现了一种新的,新兴的2D材料,这些材料由碳化物和过渡金属的硝酸盐组成,25种称为Mxenes 2。mxenes是二维材料,具有通用式M n+1 x n t x,其中m是早期过渡26金属(例如,Ti,ti,v,cr),x是碳,氮或碳二氮,T是由O,OH,F,F,27和/或Cl 2组成的表面终止组。由于其引人注目的物理,电子和化学特性,MXENES吸引了巨大的理论28和在各种应用中的实验研究兴趣,例如锂离子电池3,4,气体传感器5,氢存储29 6和热电学7。在这些研究中,将近70%专用于Ti 3 C 2 t X,这是有史以来第一个实验30合成的MXENE 8。迄今为止,它被认为是最全面研究的MXENE。31 Ti 3 C 2 T X可以选择性地从其最大相位与氢氟酸(HF)蚀刻,其中A是元素元素32通常来自元素周期表的第13和14组(对于Ti 3 C 2 T x x)8。由于蚀刻后高反应性Ti表面,33去角质Ti 3 C 2 t X通常由随机分布的表面官能团(即O,OH,F)组成,这些表面官能团统称为34表示为T x 9。然而,由于模拟混合终止表面的复杂性和计算成本,理论研究中的大部分都考虑了Bare Ti 3 C 2 10,11或均匀终止的Ti 3 C 2 T X,具有单个功能性36组4,7,12-14。58这通常被视为MXENES 15的第一代和第二代模型。早期的实验努力,例如粉末X射线衍射(XRD)8,高分辨率透射电子显微镜(TEM)8,9,16和X射线原子对38分布函数(PDF)17,用于洞悉功能组成分的分布。然而,每种方法都因其对氢的不敏感而受到阻碍,这对于理解表面终止15至关重要。40因此,使用由高质量中子总散射法支持的原子对分布函数,Wang等。15 41获得了在不同条件下合成的Ti 3 C 2 t X结构的第一个分辨率,并提出了Ti 3 C 2 T X的多层42结构模型是MXENES的下一代模型。43受Wang等人的作品的启发,几项理论研究的重点是混合功能性44个组终止的影响(O,OH,F)。Caffrey 18提出了一个经验模型,以研究混合终止的Ti 3 C 2 T x和V 2 Ct X结构的结构变化和45个电化学性能的变化,而均匀终止的46个表面的变化。根据Caffrey研究,经验模型再现了与实验数据一致的晶格参数,状态的电子密度和47个工作函数。迄今为止,关于使用簇扩展方法的2D MXENE的表面功能化的最全面的研究和48个组成是由49 Ibragimova等人进行的。19。%和10 wt。%HF。在该研究中,在标准氢电极(SHE)50条件下,最佳O:OH:F组成为50:25:25,具有相似的分布模式,这些模式不受厚度和MXENE类型的影响。51然而,文献中仍然没有调整混合表面终止的设计途径。在PDF表征中使用52个能量色散X射线光谱(EDX),Wang等。15估计多层ti 3 c 2 t x样品中的平均原子比为53 o:f,用48 wt蚀刻时为0.85和1.4。基于54个O:F比率,Wang等。 得出T X的化学计量法,等于O 0.1(OH)0.8 F 1.1和O 0.13(OH)1.04 F 0.83。 此外,55总体结晶度和排序也受HF浓度的影响。 较高的HF浓度在表面终止中产生较高的56 F组成。 直觉上,这与57个可用的f的可能性增加是一致的,可终止HF浓度较高的新鲜蚀刻的Ti表面。 因此,受Wang等人的发现的启发。基于54个O:F比率,Wang等。得出T X的化学计量法,等于O 0.1(OH)0.8 F 1.1和O 0.13(OH)1.04 F 0.83。此外,55总体结晶度和排序也受HF浓度的影响。较高的HF浓度在表面终止中产生较高的56 F组成。直觉上,这与57个可用的f的可能性增加是一致的,可终止HF浓度较高的新鲜蚀刻的Ti表面。因此,受Wang等人的发现的启发。
这项研究是“第 2 阶段”研究。这意味着,在这项研究之前,已经在许多患有或不患有 CUP 的人身上测试了给接受分子引导疗法的人服用的药物。在这项研究中,患有 CUP 的人正在接受分子引导疗法或铂类化疗——这是为了找出与铂类化疗相比,使用全面的基因组分析来指导分子引导疗法的选择是否会延长人们的癌症恶化或死亡所需的时间。这项研究是“随机的”。这意味着,随机决定患者是接受分子引导疗法还是铂类化疗。随机选择人们接受分子引导疗法还是铂类化疗,使得两组中的人群类型(例如年龄、种族)更有可能是相似的。这项研究何时何地进行?
因此,我国政府向加拿大人保证,根据加拿大净零排放情景,即把大幅削减石油产量的计划推迟到 2040 年以后,“几乎所有高收入国家”都将在 2050 年前实现其净零排放承诺。这种说法具有严重的误导性。国际能源署的 APS 情景仅仅假设,所有这些国家净零排放承诺将在 2050 年前成功实现,而没有经过审查或核实。这种高收入国家将实现其净零承诺的假设并不反映国际能源署的任何发现、分析或结论(当然也不是加拿大 CER 的独立评估),即所有这些国家,鉴于其现有或承诺的未来气候政策,都有可能在 2050 年前实现其净零排放目标。实现这一净零承诺只是推测,即使完全实现,也会使气温升高 1.7°C 或更高。不幸的事实是,我们对煤炭、石油和天然气的依赖导致的全球排放量每年仍在增长。化石燃料排放量占人类活动导致的所有排放量的 70%。
1马萨诸塞州综合医院和美国马萨诸塞州波士顿的哈佛医学院; 2德国慕尼黑的路德维希 - 马克西米利人 - 大学医院; 3美国马萨诸塞州剑桥市Amylyx Pharmaceuticals,Inc。; 4个国家医院组织Higashinagoya国家医院,日本纳戈亚; 5意大利帕多瓦大学帕多瓦大学; 6加利福尼亚大学,美国加利福尼亚州旧金山; 7医院诊所De Barcelona/IDIBAPS/西班牙加泰罗尼亚巴塞罗那大学巴塞罗那大学UBNEURO研究所; 8 SorbonneUniversité,援助PublicqueHôpitauxde Paris,巴黎脑研究所 - ICM,Inserm,CNRS,CNRS,Pitié-Salpêtrière医院神经病学系,法国巴黎; 9 Edmond J. Safra计划帕金森氏病和Rossy PSP中心,大学卫生网络和加拿大多伦多多伦多大学; 10伦敦大学伦敦大学皇后广场神经病学研究所,英国伦敦; 11 Karolinska Institutet,Solna,瑞典;瑞典哥德堡大学哥德堡大学12号; 13罗伯特·伍德·约翰逊医学院,美国新泽西州新泽西州新泽西州
功能和功能7安全说明8框图8电源体系结构9启动架构12无线接口13 WLAN标准14数据速率14数据率14天线端口15调节17安全性/互操作性17频带18 5 GHz HT20和HT40通道可用总线31没有EMMC Flash 32模块PINOUT 33信号使用限制86
评分标准包括以下等级:U=不及格、E=及格、D=满意、C=良好、B=非常好、A=优秀。不及格的成绩标记为不及格。学生的成绩是根据课程的学习成果来评估的。对于 E 级,学生的成绩合格。对于 D 级,学生的成绩满意。对于 C 级,学生的成绩良好。对于 B 级,学生的成绩非常好。对于 A 级,学生的成绩优秀。对于不及格,学生的成绩不及格。
IMX560-AAMV是一种对角线6.25 mm(1/2.9)单光子雪崩二极管(SPAD)TOF深度传感器,带有信号放大像素。通过将597×168的蜘蛛数驱动并求和它们的输出,可以从距离信息中生成3D距离图像,并且可以实现高达300 m的测量距离。可以根据应用程序调整范围操作时的SPAD(宏像素大小)数量。范围操作是通过1 GHz采样操作的,并且生成具有TOF宽度为2024 BIN的直方图(2024 ns)的直方图和12位灰度宽度的宽度,并且可以从结果中检测到Echo的ECHO和峰值。其环境光消除功能可确保其在阳光下更稳定,并且可以在高动态范围内实现距离测量值。其光发射时间控制功能能够补偿激光发射和接收之间的时间延迟。配备了回声和峰值检测功能,数据输出模式,数字信号处理等等,它已进行了优化,以满足LIDAR所需的性能和功能。(应用:FA LIDAR摄像机,工业激光摄像头)
Sample SE T /dB SE R /dB SE A /dB SE A /SE R /% SSE t /(dB·(cm −2 ·g) −1 ) M3-MX-0 5.0 0.9 4.0 4.3 87.6 M3-MX-5 6.8 1.5 5.3 3.5 147.5 M3-MX-10 7.2 1.7 5.5 3.2 171.0 M3-MX-15 7.0 1.7 5.3 3.0一直m3-ag@mx-15 69.0 10.3 58.7 5.7 2 356.6 m3-ag@mx-20 68.2 10.3 57.8 5.6 2 719.8 m3-ag@mx-25 67.9 10.0 57.0 57.9 5.8 2 439.4 2 439.4
gogotsi y,Anasori B.mxenes的兴起。acs nano。13(8):8491-8494,2019。