8:20 AM PL-MOM-2工程2D MXENE表面用于功能性电影和涂料,Yury Gogotsi(YG36@DRexel.edu),美国德雷克塞尔大学,邀请了MXENES(碳化物,硝酸盐,硝酸盐,氧气,氧气和碳替代物的早期过渡金属)是一项非常大的家族。它们具有m n +1 x n t x的化学公式,其中m是过渡金属(ti,mo,nb,v,cr等。),x是碳和/或氮(n = 1、2、3或4),而T x表示表面终止(o,o,哦,卤素,chalcogens)。各种各样的结构和组成,在M和X站点上的实心溶液的可用性以及对表面终止的控制提供了大量的材料来生产和调查。1在水性加工,高电子电导率(超过20,000 s/cm),生物相容性和出色的机械性能中,将其等离子性能易于使用,超过了其他溶液可供处理的2D材料,MXENES具有可实现众多应用的特性。2固有的2D结构,负责MXENE的光学响应和电子传输的电荷载体非常接近表面,具有出色的能力,可以经历可逆的化学和电化学反应,以增加或改变表面终止。mxenes可以应用于各种表面,以提供电子和离子电导率,在各种波长中控制光学特性,产生电致色膜,甚至达到低摩擦系数。聚合物,纸张和织物由水溶液或有机溶液中的MXENE涂覆的织物具有独特的表面特性。1,3,4MXENE涂层的性能可以在光学上或电化学调制。这些化学和光学响应式导电涂层可以实现许多技术进步。
组织工程心脏斑块作为心肌梗塞(MI)具有巨大潜力。然而,为了成功地与包含斑块的细胞的天然组织和适当的功能整合,对于这些斑块来说,模仿天然细胞外基质的有序结构和人类心脏的电导性至关重要。在这项研究中,一种可以为人类诱导的多能干细胞衍生的心肌细胞(ICM)提供导电和地形线索的新复合构建体是为心脏组织工程应用开发的。通过使用气溶胶喷气式喷气式飞机在聚乙二醇(PEG)水凝胶上,在细胞水平的分辨率上,通过在聚乙二醇(PEG)水凝胶上进行预设计的模式,在预设计的图案上以3D打印导电钛(Ti 3 c 2 t x)Mxene制造结构,然后与ICMS播种,并在一周内培养一周的cytoxoxitigity。这项工作中提出的结果说明了3D打印Ti 3 C 2 t X MXENE在对齐ICM上的重要作用,而MYH7,SERCA2和TNNT2表达式显着增加,并且具有改善的同步节拍,并进行了传导速度。这项研究表明,3D印刷Ti 3 C 2 t X MXENE可能可用于创建与MI治疗的生理相关的心脏斑块。
二维 (2D) 材料的表面工程已被证明是一种改善其功能特性的有效技术。通过设计 MXene 化合物 M 2 C 系列中的 Janus 化合物 MM ′ C(其中两个表面由两种不同的过渡金属 M 和 M ′ 构成),我们探索了它们作为酸性电解质超级电容器电极的潜力。利用密度泛函理论 (DFT) 1 结合经典溶剂化模型,我们深入分析了三种被氧钝化的 Janus MXenes - NbVC、MnVC 和 CrMnC 的电化学参数。还与相应的终点 MXenes Nb 2 C、V 2 C、Mn 2 C 和 Cr 2 C 进行了比较。我们发现由于 Janus 的形成,表面氧化还原活性增强,从而显著提高了 MXene 电极的电荷存储容量。我们的分析表明,功能性改进的根源在于 Janus 化合物中一种成分的电荷状态变化,而这种变化又源于表面处理导致的电子结构变化。我们的研究是首次针对超级电容器应用的 Janus MXenes 电化学特性进行研究,表明通过形成适当的 Janus 化合物进行表面工程是一种在基于 MXene 电极酸性电解质的储能设备中提取高功率密度的可能途径。
b“ Mxene具有通用公式M 1.33 CT Z的MXENE于2017年首次报道。[6]这些mxenes来自平面内排序的第四纪最大相位,其公式为(m'1.33 m \ xe2 \ x80 \ x9c 0.66)alc。蚀刻后,蚀刻了Al层和少数过渡金属M \ Xe2 \ X80 \ X9D,将其留下了平面内有序的分区的2D纸。By now MXenes are well recognized as performing well as negative electrodes in AASCs, [5a\xe2\x80\x93c,7] because of their high conductivity, excellent hydrophilicity, great tolerance to accom- modate various ions and negative operation potential window in three electrode configurations (e.g., to 1.6 V vs. Ag/AgCl in 21 M KCH 3 COO [8] ).最近,由于其高密度和无效材料的避免,诸如粘合剂,导电剂等,更多的工作集中在基于MXENE的自由层膜上,以实现SCS中的高体积电容(C V)。[9]在先前的报告中,硫酸(H 2 SO 4)一直是选择的电解质。细胞通常达到C S> 300 F G 1或> 1500 F CM 3的高值。[5d,10]但是,与中性水解物相比,H 2 SO 4既安全也不是绿色。进一步的问题是,i)风险“
由于其高功率密度、环境友好、卓越的充放电能力、长循环寿命和安全性,纳米材料成为最有希望的储能候选材料之一。[4,5] 将纳米材料加工成具有高电导率和良好机械稳定性的独立薄膜对超级电容器具有重要意义。要为高性能超级电容器选择合适的纳米材料,必须考虑卓越的表面特性、固有的高强度和电导率。[6,7] 在寻找能够提供所有这些特性的替代品的过程中,最近发现的二维材料 MXene 显示出巨大的潜力。MXenes 是二维家族中的一种新型候选材料(MXenes 描述为 M n + 1 X n T x ,其中 M、X 和 T x 通常代表早期过渡金属、C 或 N,以及吸附的表面功能团如 OH、 O 和 F,其中 n = 1、2 或 3)。 [8] 2D 过渡金属碳化物和氮化物 MXene(包括 Ti3C2Tx、Mo2CTx 和 V4C3Tx)具有高金属电导率、优异的循环稳定性和丰富的表面化学基团,是超级电容器的优良电极材料。[9] 通过真空辅助过滤制备 MXene 独立膜是实现这些特性的最佳选择。[10] 例如,卷曲的 Ti3C2Tx 薄膜表现出 150 000 S m−1 的高电导率和重量电容
基于电纺纤维的应变传感器由于网络构建和可量身定制的设计而广泛用于生物监测。但是,循环稳定性差和缺乏多模式仍然是主要问题。在这项研究中,采用了由MXENE,石墨烯纳米片(GNP)和纤维素纳米晶体(CNC)组成的3组分材料系统来解决多模式和敏感性短缺。MXENE和石墨烯纳米片(GNP)之间的杂化协同相互作用提供了高量表因子(400个为100%,在10%菌株时为76.1)。通过形成局部脆性区域,在较低的应变范围内提供了更高的电导率和灵敏度(低应变范围(低检测极限为0.25%,短响应时间为100 ms))。协同,具有较大侧向尺寸的GNP薄片促进了网络连接,易于滑动较大的应变和润滑性。另一方面,CNC粘合剂增强了成分之间的均匀性和界面氢键,从而导致了超过2,000个周期的理想循环能力。使用具有导电性添加剂的聚(苯乙烯丁二烯 - 苯乙烯)(SBS)底物来装饰聚(苯乙烯丁二烯 - 苯乙烯)(SBS)底物,这显着增强了导电涂层的均匀性。通过同时真空辅助过滤,该技术提供了更多的共形和深度纤维装饰,从而促进了多模态和灵敏度。发达的策略被证明可以有效地通过理想的身体整合和成功记录各种身体运动的传感器。
纳米材料的改性、薄膜涂层、纳米晶尖晶石的合成、石墨烯和 MXene 等二维材料的合成和表征、金属基复合材料、摩擦搅拌加工、可生物降解材料的非常规加工。通过太阳能电池实现绿色能源。
有一个北极拱顶,热带玻璃杯,纸室和显微镜幻灯片的共同点吗?所有这些都可以是现场植物集合的家,其中物种被安置在其自然环境之外,以保存它们。尽管植物在其本地栖息地仍然是最终目标,但事实收藏在帮助识别物种和支持研究方面具有至关重要的作用。他们还可以为受到人类侵占的野生和栽培种群提供种质,以改变土地使用,植物均质化1,气候变化,战争和其他冲突的形式。Svalbard全球种子库(位于北极永久冻土中的一个掩体内)已成为种子库可以提供的希望的象征。它仅在2008年才开放,但它已经确定了其重要性:在2015年至2017年之间,国际干旱地区的国际农业研究中心(Icarda)能够从叙利亚内战期间丢失的种子丢失的种子中检索备用样本,并补充了辅助垫的固定性。保护生存能力是种子银行的关键挑战:在某些防腐剂条件下,可以从保存的种子中再生植物,但了解如何最大化种子生存能力和多样性仍然是研究的优先事项。也可以从干燥的标本室标本中检索遗传物质,并提供了独特的长期数据窗口。自然生态与进化中的文章使用标本室标本来表征数百年3年的植物气孔对气候变化的反应,并揭示了关键作物4的作用和适应。草药类似于其他形式的植物收集,不可避免地反映了收集它们的人类的偏见,以至于在植物
政府经常从工程和地缘政治角度看待能源安全。工程学的观点与能源技术的安全和可靠运行有关,主要是通过监管来实现的。尽管这主要集中在核电站等单个工厂上,但由于低碳间歇性可再生能源的渗透率增加,现在考虑到英国,德国和澳大利亚等国家 /地区更广泛的电气三级系统的稳定性。地缘政治观点在历史上主要与资源供应安全性有关,目的是确保英国以稳定的价格获得稳定的化石燃料供应,并在某种程度上促进能源独立性和国内化石燃料储量的发展[17,18]。