二维过渡金属(TM)碳化物和碳氮化物(称为MXenes)自2011年首次亮相以来,由于其二维层状结构和优异的物理化学性质,在各个应用领域引起了极大关注。[1] MXenes 可以从相应的层状 MAX 相中衍生出来,其结构公式为 M n + 1 AX n(n = 1–3)。[2] MAX 相化合物由过渡金属(M)层与 C 或 N 层(X)交错组成,强的 M X 键进一步通过 III A 或 IV A 族元素(A)的单原子层插入,呈现原子层和六方晶体结构。[3,4] 通常,可以通过优先溶解和提取 MAX 相结构中弱键合的 A 层来获得 MXenes。 [5,6] 在水相中蚀刻和剥离过程中,高反应性的TM表面立即与F、OH和=O等物质连接,得到MXene通式:M n + 1 X n T x (T x 代表表面物质)。[7–9] 基于丰富的表面终端、独特的混合共价键和金属键的层状结构,MXenes表现出有趣的功能性能,如优异的电化学和光学性能、优异的热导率、高电导率和突出的机械特性。[10–13] MXenes的这些性质可以通过改变微观结构、元素组成和表面终端来进一步调节,[14–19] 例如,通过改变M或X元素、合金化M或X层,[20–24] 以及通过使用多元素(M)面外或面内顺序在MXene结构中构造特殊空位。 [23,25–29] 因此,多功能且具有潜在可扩展性的合成技术使 MXene 材料在性能可调的二维材料领域中占据了独特的地位。[30]
ni-ti3c2 mxene复合材料从酸和碱性培养基中的电化学氢进化反应的Ni-Metal有机框架(Gothandapani k。泰米尔·塞尔维·G。索非亚·詹妮弗·R。 Velmurugan v。; Pandaraj s。; Muthuramoorthy m。; Pitchaimuthu s。 Raghavan诉; Joseph Malathi A.C。; Alodhayb a。; Nirmala Grace A.
1- Yeole,S。P。; Jadhav,P。S。; Joshi,G。M.表面活性剂改性石墨烯及其基于衍生物的聚合物纳米复合材料的最新情况 - 综述。 巨摩尔。 化学。 物理。 ,2023,224,2300122。 2 Imtiaz,s。; Siddiq,M。; Kausar,A。; Muntha,S.T。; Ambreen,J。; Bibi,I。 碳纳米管(CNT)增强聚合物和环氧纳米复合材料的制造,特性和应用的评论。 中文J. Polym。 SCI。 ,2018,36(4),445-461。 3 szeluga,u。; Kumanek,b。 Trzebicka,B。混合聚合物/纳米碳复合材料中的协同作用。 评论。 compos。 A部分appl。 SCI。 制造。 ,2015,73,204-231。 4 Ke,K。; Yue,L。; Shao,H。Q。;杨,M。B。; Yang,W。; manas-zloczower,I。 通过混合碳填充剂来增强聚合物纳米复合材料的电和压电性能:评论。 碳,2021,173,1020-1040。 5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。 Nanoscale,2016,8(26),12977-12989。 6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。1- Yeole,S。P。; Jadhav,P。S。; Joshi,G。M.表面活性剂改性石墨烯及其基于衍生物的聚合物纳米复合材料的最新情况 - 综述。巨摩尔。化学。物理。,2023,224,2300122。2 Imtiaz,s。; Siddiq,M。; Kausar,A。; Muntha,S.T。; Ambreen,J。; Bibi,I。 碳纳米管(CNT)增强聚合物和环氧纳米复合材料的制造,特性和应用的评论。 中文J. Polym。 SCI。 ,2018,36(4),445-461。 3 szeluga,u。; Kumanek,b。 Trzebicka,B。混合聚合物/纳米碳复合材料中的协同作用。 评论。 compos。 A部分appl。 SCI。 制造。 ,2015,73,204-231。 4 Ke,K。; Yue,L。; Shao,H。Q。;杨,M。B。; Yang,W。; manas-zloczower,I。 通过混合碳填充剂来增强聚合物纳米复合材料的电和压电性能:评论。 碳,2021,173,1020-1040。 5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。 Nanoscale,2016,8(26),12977-12989。 6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。2 Imtiaz,s。; Siddiq,M。; Kausar,A。; Muntha,S.T。; Ambreen,J。; Bibi,I。碳纳米管(CNT)增强聚合物和环氧纳米复合材料的制造,特性和应用的评论。中文J. Polym。SCI。 ,2018,36(4),445-461。 3 szeluga,u。; Kumanek,b。 Trzebicka,B。混合聚合物/纳米碳复合材料中的协同作用。 评论。 compos。 A部分appl。 SCI。 制造。 ,2015,73,204-231。 4 Ke,K。; Yue,L。; Shao,H。Q。;杨,M。B。; Yang,W。; manas-zloczower,I。 通过混合碳填充剂来增强聚合物纳米复合材料的电和压电性能:评论。 碳,2021,173,1020-1040。 5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。 Nanoscale,2016,8(26),12977-12989。 6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。SCI。,2018,36(4),445-461。3 szeluga,u。; Kumanek,b。 Trzebicka,B。混合聚合物/纳米碳复合材料中的协同作用。评论。compos。A部分appl。SCI。 制造。 ,2015,73,204-231。 4 Ke,K。; Yue,L。; Shao,H。Q。;杨,M。B。; Yang,W。; manas-zloczower,I。 通过混合碳填充剂来增强聚合物纳米复合材料的电和压电性能:评论。 碳,2021,173,1020-1040。 5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。 Nanoscale,2016,8(26),12977-12989。 6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。SCI。制造。,2015,73,204-231。4 Ke,K。; Yue,L。; Shao,H。Q。;杨,M。B。; Yang,W。; manas-zloczower,I。 通过混合碳填充剂来增强聚合物纳米复合材料的电和压电性能:评论。 碳,2021,173,1020-1040。 5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。 Nanoscale,2016,8(26),12977-12989。 6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。4 Ke,K。; Yue,L。; Shao,H。Q。;杨,M。B。; Yang,W。; manas-zloczower,I。通过混合碳填充剂来增强聚合物纳米复合材料的电和压电性能:评论。碳,2021,173,1020-1040。5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。 Nanoscale,2016,8(26),12977-12989。 6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。Nanoscale,2016,8(26),12977-12989。6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。6 Yu,L。M。; Huang,H。X.使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。聚合物,2022,247,124791。7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。polym。测试。,2023,124,108068。8 Wang,Y。X。; Yue,Y。; Cheng,f。; Cheng,Y。F。; GE,B.H。; N. S. Liu; Gao,Y。H. Ti 3 C 2 t x基于MXENE的柔性压电物理传感器。 ACS Nano,2022,16(2),1734-1758。 9 Sheng,X。X。; Zhao,Y。F。;张,L。; lu,X。 二维Ti 3 C 2 MXENE/热塑性聚氨酯纳米复合材料的性能,并通过熔体混合有效增强。 compos。 SCI。 技术。 ,2019,181,107710。 10 Gao,Q。S。; Feng,M.J。;说谎。;刘C. T。; Shen,C。Y。; Liu,X。H. Ti 3 C 2 Tx Mxene/热塑性聚氨酯纳米复合材料的机械,热和流变特性。 巨摩尔。 mater。 eng。 ,2020,305,2000343。 11 Luo,Y。; Xie,Y。H。; Geng,W。; Dai,G。F。; Sheng,X。X。; Xie,D.L。; Wu,H。; Mei,Y。 用官能化的MXENE制造热塑性聚氨酯,朝着高机械强度,阻燃剂和烟雾抑制特性。 J.胶体界面科学。 ,2022,606,223-235。 12刘c。 Shi,Y。Q。;是的他,J。H。; Lin,Y。X。; li,Z。; Lu,J.H。; Tang,Y。L。; Wang,Y。 Z。; Chen,L。用次生磷酸盐功能化MXEN,以用于高度火灾的热塑性聚氨酯复合材料。 compos。 A部分appl。 SCI。 制造。 ,2023,168,107486。 13陈梦杰,李志健,周宏伟,刘汉斌。 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。 高分子学报,2023,54(11),1740-1752。 14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。 基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。8 Wang,Y。X。; Yue,Y。; Cheng,f。; Cheng,Y。F。; GE,B.H。; N. S. Liu; Gao,Y。H. Ti 3 C 2 t x基于MXENE的柔性压电物理传感器。ACS Nano,2022,16(2),1734-1758。9 Sheng,X。X。; Zhao,Y。F。;张,L。; lu,X。 二维Ti 3 C 2 MXENE/热塑性聚氨酯纳米复合材料的性能,并通过熔体混合有效增强。 compos。 SCI。 技术。 ,2019,181,107710。 10 Gao,Q。S。; Feng,M.J。;说谎。;刘C. T。; Shen,C。Y。; Liu,X。H. Ti 3 C 2 Tx Mxene/热塑性聚氨酯纳米复合材料的机械,热和流变特性。 巨摩尔。 mater。 eng。 ,2020,305,2000343。 11 Luo,Y。; Xie,Y。H。; Geng,W。; Dai,G。F。; Sheng,X。X。; Xie,D.L。; Wu,H。; Mei,Y。 用官能化的MXENE制造热塑性聚氨酯,朝着高机械强度,阻燃剂和烟雾抑制特性。 J.胶体界面科学。 ,2022,606,223-235。 12刘c。 Shi,Y。Q。;是的他,J。H。; Lin,Y。X。; li,Z。; Lu,J.H。; Tang,Y。L。; Wang,Y。 Z。; Chen,L。用次生磷酸盐功能化MXEN,以用于高度火灾的热塑性聚氨酯复合材料。 compos。 A部分appl。 SCI。 制造。 ,2023,168,107486。 13陈梦杰,李志健,周宏伟,刘汉斌。 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。 高分子学报,2023,54(11),1740-1752。 14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。 基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。9 Sheng,X。X。; Zhao,Y。F。;张,L。; lu,X。二维Ti 3 C 2 MXENE/热塑性聚氨酯纳米复合材料的性能,并通过熔体混合有效增强。compos。SCI。 技术。 ,2019,181,107710。 10 Gao,Q。S。; Feng,M.J。;说谎。;刘C. T。; Shen,C。Y。; Liu,X。H. Ti 3 C 2 Tx Mxene/热塑性聚氨酯纳米复合材料的机械,热和流变特性。 巨摩尔。 mater。 eng。 ,2020,305,2000343。 11 Luo,Y。; Xie,Y。H。; Geng,W。; Dai,G。F。; Sheng,X。X。; Xie,D.L。; Wu,H。; Mei,Y。 用官能化的MXENE制造热塑性聚氨酯,朝着高机械强度,阻燃剂和烟雾抑制特性。 J.胶体界面科学。 ,2022,606,223-235。 12刘c。 Shi,Y。Q。;是的他,J。H。; Lin,Y。X。; li,Z。; Lu,J.H。; Tang,Y。L。; Wang,Y。 Z。; Chen,L。用次生磷酸盐功能化MXEN,以用于高度火灾的热塑性聚氨酯复合材料。 compos。 A部分appl。 SCI。 制造。 ,2023,168,107486。 13陈梦杰,李志健,周宏伟,刘汉斌。 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。 高分子学报,2023,54(11),1740-1752。 14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。 基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。SCI。技术。,2019,181,107710。10 Gao,Q。S。; Feng,M.J。;说谎。;刘C. T。; Shen,C。Y。; Liu,X。H. Ti 3 C 2 Tx Mxene/热塑性聚氨酯纳米复合材料的机械,热和流变特性。 巨摩尔。 mater。 eng。 ,2020,305,2000343。 11 Luo,Y。; Xie,Y。H。; Geng,W。; Dai,G。F。; Sheng,X。X。; Xie,D.L。; Wu,H。; Mei,Y。 用官能化的MXENE制造热塑性聚氨酯,朝着高机械强度,阻燃剂和烟雾抑制特性。 J.胶体界面科学。 ,2022,606,223-235。 12刘c。 Shi,Y。Q。;是的他,J。H。; Lin,Y。X。; li,Z。; Lu,J.H。; Tang,Y。L。; Wang,Y。 Z。; Chen,L。用次生磷酸盐功能化MXEN,以用于高度火灾的热塑性聚氨酯复合材料。 compos。 A部分appl。 SCI。 制造。 ,2023,168,107486。 13陈梦杰,李志健,周宏伟,刘汉斌。 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。 高分子学报,2023,54(11),1740-1752。 14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。 基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。10 Gao,Q。S。; Feng,M.J。;说谎。;刘C. T。; Shen,C。Y。; Liu,X。H. Ti 3 C 2 Tx Mxene/热塑性聚氨酯纳米复合材料的机械,热和流变特性。巨摩尔。mater。eng。,2020,305,2000343。11 Luo,Y。; Xie,Y。H。; Geng,W。; Dai,G。F。; Sheng,X。X。; Xie,D.L。; Wu,H。; Mei,Y。 用官能化的MXENE制造热塑性聚氨酯,朝着高机械强度,阻燃剂和烟雾抑制特性。 J.胶体界面科学。 ,2022,606,223-235。 12刘c。 Shi,Y。Q。;是的他,J。H。; Lin,Y。X。; li,Z。; Lu,J.H。; Tang,Y。L。; Wang,Y。 Z。; Chen,L。用次生磷酸盐功能化MXEN,以用于高度火灾的热塑性聚氨酯复合材料。 compos。 A部分appl。 SCI。 制造。 ,2023,168,107486。 13陈梦杰,李志健,周宏伟,刘汉斌。 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。 高分子学报,2023,54(11),1740-1752。 14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。 基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。11 Luo,Y。; Xie,Y。H。; Geng,W。; Dai,G。F。; Sheng,X。X。; Xie,D.L。; Wu,H。; Mei,Y。用官能化的MXENE制造热塑性聚氨酯,朝着高机械强度,阻燃剂和烟雾抑制特性。J.胶体界面科学。,2022,606,223-235。12刘c。 Shi,Y。Q。;是的他,J。H。; Lin,Y。X。; li,Z。; Lu,J.H。; Tang,Y。L。; Wang,Y。Z。; Chen,L。用次生磷酸盐功能化MXEN,以用于高度火灾的热塑性聚氨酯复合材料。compos。A部分appl。SCI。 制造。 ,2023,168,107486。 13陈梦杰,李志健,周宏伟,刘汉斌。 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。 高分子学报,2023,54(11),1740-1752。 14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。 基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。SCI。制造。,2023,168,107486。13陈梦杰,李志健,周宏伟,刘汉斌。细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。高分子学报,2023,54(11),1740-1752。14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。高分子学报,2022,53(6),617-625。15 Dong,H。; Sun,J.C。; Liu,X。M。; Jiang,X。D。; Lu,S。W.具有双层导电结构的高度敏感和可拉伸的MXENE/CNT/TPU复合应变传感器,用于人类运动检测。 acs appl。 mater。 接口,2022,14(13),15504-15516。 16 Wang,H。C。; Zhou,R。C。; Li,D。H。;张,L。R。; Ren,G。Z。; Wang,L。; Liu,J.H。; Wang,D.Y。; Tang,Z。H。; lu,G。; Sun,G。Z。; Yu,H。D。; Huang,W。基于碳纳米管的高性能泡沫形状应变传感器和Ti 3 C 2 t x Mxene,用于监测人类活动。 ACS Nano,2021,15(6),9690-9700。 17 Su,F。C。; Huang,H。X. 具有快速响应的柔性开关压力传感器,弯曲敏感的性能较低,适用于疼痛感受模拟的手套。 acs appl。 mater。 接口,2023,15(48),56328-56336。 18田信龙,黄汉雄。 具有较高回弹性的poe基微孔复合材料的传感性能。 高分子学报,2023,54(2),235-244。15 Dong,H。; Sun,J.C。; Liu,X。M。; Jiang,X。D。; Lu,S。W.具有双层导电结构的高度敏感和可拉伸的MXENE/CNT/TPU复合应变传感器,用于人类运动检测。acs appl。mater。接口,2022,14(13),15504-15516。16 Wang,H。C。; Zhou,R。C。; Li,D。H。;张,L。R。; Ren,G。Z。; Wang,L。; Liu,J.H。; Wang,D.Y。; Tang,Z。H。; lu,G。; Sun,G。Z。; Yu,H。D。; Huang,W。基于碳纳米管的高性能泡沫形状应变传感器和Ti 3 C 2 t x Mxene,用于监测人类活动。 ACS Nano,2021,15(6),9690-9700。 17 Su,F。C。; Huang,H。X. 具有快速响应的柔性开关压力传感器,弯曲敏感的性能较低,适用于疼痛感受模拟的手套。 acs appl。 mater。 接口,2023,15(48),56328-56336。 18田信龙,黄汉雄。 具有较高回弹性的poe基微孔复合材料的传感性能。 高分子学报,2023,54(2),235-244。16 Wang,H。C。; Zhou,R。C。; Li,D。H。;张,L。R。; Ren,G。Z。; Wang,L。; Liu,J.H。; Wang,D.Y。; Tang,Z。H。; lu,G。; Sun,G。Z。; Yu,H。D。; Huang,W。基于碳纳米管的高性能泡沫形状应变传感器和Ti 3 C 2 t x Mxene,用于监测人类活动。ACS Nano,2021,15(6),9690-9700。17 Su,F。C。; Huang,H。X. 具有快速响应的柔性开关压力传感器,弯曲敏感的性能较低,适用于疼痛感受模拟的手套。 acs appl。 mater。 接口,2023,15(48),56328-56336。 18田信龙,黄汉雄。 具有较高回弹性的poe基微孔复合材料的传感性能。 高分子学报,2023,54(2),235-244。17 Su,F。C。; Huang,H。X.具有快速响应的柔性开关压力传感器,弯曲敏感的性能较低,适用于疼痛感受模拟的手套。acs appl。mater。接口,2023,15(48),56328-56336。18田信龙,黄汉雄。具有较高回弹性的poe基微孔复合材料的传感性能。高分子学报,2023,54(2),235-244。
单剂量的psilocybin是一种迷幻的,急性引起时空感知和自我溶解的扭曲,在人类临床试验中会产生快速而持久的治疗作用1-4。在动物模型中,psilocybin在皮质和海马5-8中诱导神经可塑性。尚不清楚人脑网络如何变化与迷幻药的主观和持久作用有关。在这里,我们通过纵向精确的功能映射跟踪了个体特异性的大脑变化(每个参与者大约有18个磁共振成像访问)。在高剂量psilocybin(25 mg)和哌醋甲酯(40 mg)之前,期间,期间和持续3周进行追踪健康成年人,并在6-12个月后带回额外的psilocybin剂量。psilocybin在皮质和亚皮层中大大中断的功能连通性(FC),急性导致比哌醋甲酯大三倍以上。这些FC的变化是由空间尺度(Areal,Global)之间的大脑对同步的驱动的,这些变化通过减少网络之间的相关性和反相关性来溶解网络区分。psilocybin驱动的FC变化在默认模式网络中最强,该模式网络连接到前海马,并被认为会产生我们的时空感,时间和自我感。FC变化中的个体差异与主观迷幻体验密切相关。执行感知任务减少了psilocybin驱动的FC变化。psilocybin导致前海马和默认模式网络之间FC持续下降,持续数周。持续减少海马默认模式网络连接性可能代表了迷幻药的预防和治疗效应的神经解剖学和机械相关性。
二维 (2D) 过渡金属碳化物(称为 MXenes)自 2011 年以来不断发展,部分原因是它们具有令人印象深刻的高电导率、刚性机械性能和丰富的化学活性表面基团。MXenes 的这些关键特性使它们成为均匀覆盖金属粉末以用于增材制造多功能金属复合材料的有吸引力的候选者。在本研究中,我们报告了一种可调的自组装过程,即使用 1 – 10 wt% 的单层至多层 Ti 3 C 2 T x MXene,在微米级 Al 颗粒上形成纳米厚的 2D MXene 薄片。此外,我们讨论了使用 2D x 射线衍射 (XRD 2 ) 对这些复合材料进行表征,以识别特征性的 Ti 3 C 2 T x 衍射峰。最后,我们使用原位 XRD 2 结合维氏硬度和扫描电子显微镜/能量色散 x 射线光谱法来了解烧结对 Ti 3 C 2 T x 形态的影响以及由此产生的块状复合材料的机械性能。这项研究旨在帮助未来在 MXene-金属复合材料的增材制造方面取得进展,以用于一系列多功能应用。
b'片上微型超级电容器(MSC)是最有前途的器件之一,可集成到微/纳米级电子设备中以提供足够的峰值功率和能量支持。然而,较低的工作电压和有限的能量密度极大地限制了它们更广泛的实际应用。在此,设计了基于Ti3C2TxMXene作为负极、活性炭作为正极的高压片上MSC,并通过一种新颖的切割喷涂法简单地制造了它。通过解决MXene的过度极化,单个非对称片上MSC可以在中性电解质(PVA / Na2SO4)中提供高达1.6V的电位窗口,并具有7.8 mF cm2的高面积电容(堆栈比电容为36.5 F cm3)和大大提高的能量密度3.5 mWh cm3在功率密度为100 mW cm3时,这远远高于其他片上储能产品。此外,MSC 表现出优异的容量保持率(10,000 次循环后仍保持 91.4%)。更重要的是,MSC 可以轻松扩大为硅晶片上串联和/或并联的高度集成阵列。显然,这项研究为开发用于片上电子产品和便携式设备的高压 MXene 基 MSC 开辟了新途径。'
本期刊文章的自存档后印本版本可在林雪平大学机构知识库 (DiVA) 上找到:http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-174378 注意:引用本作品时,请引用原始出版物。Zheng, W., Halim, J., Etman, A., El Ghazaly, A., Rosén, J., Barsoum, M., (2021), Boosting the volumetric capacities of MoO3-x free-standing films with Ti3C2 MXene, Electrochimica Acta , 370, 137665. https://doi.org/10.1016/j.electacta.2020.137665
人形机器人手机中的触觉感知系统不足 - lators限制了可用机器人应用的广度。在这里,我们为机器人填充剂设计了一种多功能式触觉传感器,该传感器提供了类似于人类皮肤传感方式的功能。该传感器utizes是一种新型的pi-mxene/srtio 3混合气凝胶作为感应单元而开发的,具有电磁透射和热融合的其他能力,可适应某些复杂的环境。此外,聚酰亚胺(PI)提供了高强度的骨骼,MXENE实现了压力感应功能,并且MXENE/SRTIO 3达到了热电和红外辐射反应行为。此外,通过压力响应机制和不稳定状态的传热,这些气凝胶衍生的透气传感器以最小的交叉耦合实现了多模式感应和识别能力。使用决策树算法,它们可以区分13种类型的硬度和四种类型的材料与精度为94%和85%的物体。此外,基于红外介导函数,组装了感官阵列,并成功识别了对象的不同形状。这些发现的示例,即这种pi-mxene/srtio 3气凝胶提供了一个新的概念,可以扩展可振动传感器的多功能性,从而使操纵器可以更接近人类手的触觉水平。这一进步减少了整合人形机器人的困难,并为它们的可能性提供了新的应用程序场景。
大型垂直压电性,5–7可调节带隙,8,9和大型Dzyaloshinskii – Moriya互动(DMI)。10,11因此,近年来,2d Janus材料在纳米科学和纳米技术方面受到了广泛关注。迄今为止,已经在实验中发现了几种磁性janus材料或从理论上预测。例如,他等人。预测,基于CR的Janus Mxene Monolayers CR 2 CXX 0(x,x,x 0 = h,f,cl,br,oh)的NE´EL温度最高为400K。12同样,Akgenc等人。预测基于CR的Janus MXENE的单层CRSCC中的居里温度为1120 K,这表明对未来的Spintronic应用提出了承诺的候选者。13 Jiao等。 提出了新的2d Janus Cr 2 O 2 Xy(X = Cl,Y = Br/I)单层,并研究了使用菌株从铁磁到抗铁磁状态的相过渡,提出Cr 2 O 2 XY作为旋转型应用的潜在材料。 14此外,Zhang等人。 预测具有较大山谷极化的高度稳定的室温磁磁性janus vsse单层,在Valleytronics V(S,SE)2中具有潜在的应用。 15研究13 Jiao等。提出了新的2d Janus Cr 2 O 2 Xy(X = Cl,Y = Br/I)单层,并研究了使用菌株从铁磁到抗铁磁状态的相过渡,提出Cr 2 O 2 XY作为旋转型应用的潜在材料。14此外,Zhang等人。 预测具有较大山谷极化的高度稳定的室温磁磁性janus vsse单层,在Valleytronics V(S,SE)2中具有潜在的应用。 15研究14此外,Zhang等人。预测具有较大山谷极化的高度稳定的室温磁磁性janus vsse单层,在Valleytronics V(S,SE)2中具有潜在的应用。15研究
制定绿色和有效的制备策略是2D过渡金属氮化物和/或碳化物(MXENES)领域的持续追求。传统的蚀刻方法,例如基于HF的或高温的Lewis-Acid-Molten-Molten-Salt蚀刻途径,需要更严格的蚀刻条件,并且表现出较低的制备效率,具有有限的可扩展性,严重限制了其商业生产和实际应用。在这里,通过使用NH 4 HF 2作为Etchant,提出了一种超快低温熔融盐(LTMS)蚀刻方法,用于大规模合成不同的MXENES。增加的热运动和改善的熔融NH 4 HF 2分子显着加快了最大相的蚀刻过程,从而在短短5分钟内实现了Ti 3 C 2 T X Mxene的准备。LTMS方法的普遍性使其成为快速合成各种MXENE的宝贵方法,包括V 4 C 3 T X,NB 4 C 3 T X,MO 2 TIC 2 T X X和MO 2 CT X。LTMS方法易于扩展,并且可以在单个反应中产生超过100 g Ti 3 c 2 t x。获得的LTMS-MXENE在超级电容器中表现出出色的电化学性能,显然证明了LTMS方法的效果。这项工作为大规模商业生产提供了一种超快,通用和可扩展的LTM蚀刻方法。