本综述赞扬了电子显微镜方法的广度和深度,以及这些方法如何推动了对 MXenes 的大规模研究。MXenes 是二维材料中一个强大的新成员,源自其母体纳米层状材料家族,即 MAX 相。由于其丰富的化学性质,MXenes 表现出了彻底改变一系列应用的特性,包括储能、电磁干扰屏蔽、水过滤、传感器和催化。与电子显微镜相比,很少有其他方法在 MXene 研究和相应应用的开发中更为重要,电子显微镜可以在原子尺度上进行结构和化学识别。下面,将介绍已应用于 MXene 和 MAX 相前体研究的电子显微镜方法以及研究示例,并讨论其优点和挑战。© 2020 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可 ( http://creativecommons.org/licenses/by/4.0/ ) 的开放获取文章。
作者的完整列表:Sharma,Vidushi;新泽西理工学院纽瓦克工程学院,达塔,迪巴卡;新泽西理工学院(NJIT),机械和工业工程系
自 2004 年以来,随着二维 (2D) 材料的迅猛发展,这些纳米材料在许多应用领域引起了广泛关注,包括储能、[1] 催化、[8] 柔性电子 [9] 和摩擦纳米发电机。[12] MXenes 于 2011 年被发现,是几原子厚的层状二维过渡金属碳化物、氮化物和碳氮化物。[13] MXene 单片的化学式为 M n +1 X n T x (n = 1 至 4),它描述了交替的过渡金属层(M:元素周期表的第 3 – 6 族)与具有键合终端的碳/氮(X)层(T x:-O 2 、-F 2 、-(OH) 2 、-Cl 2 或它们的组合)交错在外部过渡金属表面上。 [6, 14, 15] MXenes 的晶体结构和化学式来源于其 3D
摘要近年来,由于其独特的特性,例如出色的安全性,明显的层间间距,环境灵活性,较大的表面积,高电导率和出色的热稳定性,二维MXENES已成为可充电电池的潜在电极材料。这篇综述研究了MXENES及其复合材料(混合结构)领域的所有最新进展,这些进展对于高级可充电电池的电化学应用很有用。本次评论的主要重点是金属离子电池和锂 - 硫磺(Li – S)电池。旨在表明,合成和表征的最新改进,对层间距离的更大控制以及新的Mxene复合材料的结合在一起,共同充当了储能应用的新兴和潜在方法。