敏感传感器、全光开关和可重构分插滤波器[5-7]。前期工作中,利用微环谐振器(MRR)的对称谐振特性,已经制作出许多带宽可调的器件[8-12]。例如,一种是基于单个微环谐振器的滤波器,其谐振器的耦合系数由微机电系统调整。然而,要实现 MEMS 可调谐性,需要施加近 40 V 的高驱动电压 [5]。另一种也是基于单个微环谐振器的滤波器 [13]。其谐振器的耦合系数由热光移相器调整。这种滤波器的缺点是带宽变化范围有限,带外抑制性能较差。还有一种结合了 MZI 和环形谐振器的滤波器,环形谐振器嵌入 MZI 臂中,其带宽调谐受到带内纹波和插入损耗的限制 [14]。在本文中,我们展示了一种基于环形谐振器和具有 Fano 谐振的 MZI 的带宽可调光学滤波器。它由两个单个 MRR 和一个由两个 1 9 2 多模干涉 (MMI) 构成的 MZI 结构组成。两个单个 MRR 的耦合系数均由热光移相器调谐。在这种新设计中,由两个 TiN 加热器控制的两个 MRR 可用于产生额外的相位以打破正常 MRR 的对称洛伦兹形状。通过两个不对称洛伦兹形状的叠加可以观察到 Fano 谐振,并且 3 dB 通带明显增宽。利用硅的热光(TO)特性,带宽范围从0.46到3.09nm,比以前的器件更宽。输出端口的消光比大于25dB,自由光谱范围(FSR)为9.2nm,适合光电集成电路中的传输。众所周知,通过端口3dB,带宽是一个重要的
1。引言硅光子设备由于其吸引人的特性而变得越来越流行。小尺寸,较大的折射率对比度和CMOS兼容性是硅光子设备的特性,它们使其成为多个行业的选择设备 - 电信,生物医学等[1,2]。使用最广泛的硅光子设备组件之一是Mach-Zehnder干涉仪(MZI)。在硅平台上实施的Mach-Zehnder干涉仪是各种应用的关键元素,从电信(用于光子波导开关和光子调制器)到感应,神经网络,量子和信号处理的关键元素[3-11]。MZI的效用源于其干涉特性,这是通过在MZI的两个臂之间创建相对相移来实现的。使用相位变速器或通过使MZI的两个臂的光路长度不平等来实现此相移。MZI配置,其中MZI的两个臂都不相等,称为MZI不平衡。不平衡的MZI已用于位移传感[12],气体传感[13],模式切换[14]和调制[15]。在本文中,我们展示了我们建模,模拟和随后制造的MZI设计不平衡的设计。我们检查了几种不平衡的MZI设计,并分析了设备的仿真和实验传输特性。我们阐明了波导建模的过程并进行了分析,以补偿制造变化并详细介绍了一些数据分析。
摘要 本文介绍了一种非平衡马赫-曾德干涉仪 (MZI) 固有的干涉特性,该干涉仪通过精密制造技术在绝缘体上硅平台上实现。研究深入探讨了自由光谱范围 (FSR) 与非平衡 MZI 各种长度之间的复杂关系。值得注意的是,模拟结果与实验结果的比较显示出了惊人的一致性。 关键词:马赫-曾德干涉仪、光子学、绝缘体上硅、波导 1. 简介 硅光子器件因其吸引人的特性而越来越受欢迎。小尺寸、大折射率对比度和 CMOS 兼容性是硅光子器件的特性之一,这些特性使其成为电信、生物医学等多个行业的首选器件[1]。马赫-曾德干涉仪 (MZI) 是最广泛使用的硅光子器件组件之一。在硅平台上实现的马赫-曾德尔干涉仪是各种应用的关键元件,从电信(用于光子波导开关和光子调制器)到传感和信号处理 [2]、[3]、[4]。MZI 的实用性源于其干涉特性,这是通过在 MZI 的两个臂之间产生相对相移来实现的。这种相移可以通过使用移相器或使 MZI 的两个臂的光路长度不相等来实现。MZI 的两个臂不相等的 MZI 配置称为不平衡 MZI。在本文中,我们展示了一种不平衡 MZI 设计,我们对其进行了建模、模拟和随后的制造。我们研究了几种不平衡 MZI 设计,并分析了这些设备的模拟和实验传输特性。我们阐明了波导建模的过程,并进行了分析以补偿制造变化,并详细介绍了一些数据分析。 2. 材料与方法 2.1 理论 马赫-曾德干涉仪 (MZI) 包括一个分束器和一个光束组合器,它们通过一对波导相互连接,如图 1 所示。MZI 配置包括分束器将波导输入端 (E i ) 的入射光分成波导的臂或分支。随后,光在输出端重新组合成光束
摘要:光子计算因能以比数字电子替代方案高得多的时钟频率加速人工神经网络任务而受到广泛关注。特别是由马赫-曾德尔干涉仪 (MZI) 网格组成的可重构光子处理器在光子矩阵乘法器中很有前途。希望实现高基 MZI 网格来提高计算能力。传统上,需要三个级联 MZI 网格(两个通用 N × N 酉 MZI 网格和一个对角 MZI 网格)来表示 N × N 权重矩阵,需要 O ( N 2 ) 个 MZI,这严重限制了可扩展性。在此,我们提出了一种光子矩阵架构,使用一个非通用 N × N 酉 MZI 网格的实部来表示实值矩阵。在光子神经网络等应用中,它可能将所需的 MZI 减少到 O ( N log 2 N ) 级别,同时以较低的学习能力损失为代价。通过实验,我们实现了一个 4 × 4 光子神经芯片,并对其在卷积神经网络中的性能进行了基准测试,以用于手写识别任务。与基于传统架构的 O (N 2) MZI 芯片相比,我们的 4 × 4 芯片的学习能力损失较低。而在光学损耗、芯片尺寸、功耗、编码误差方面,我们的架构表现出全面的优势。
每个 SiN PIC 都包含一组嵌入波导中的 TOPM,以便调整和平衡 AMZI 结构。这些加热器控制干涉仪臂的相对相位,以及结点处马赫-曾德尔干涉仪 (MZI) 结构的分光比。这些加热器由源测量单元 (SMU) 阵列控制,这些单元将每个加热器设置为恒定电压。对于每个 AMZI 结构,第一个 MZI 的分光比设置为在第二个 MZI 处产生相等的会聚脉冲。这要求沿 AMZI 的长臂发送更高的强度,而长臂处的光学损耗略高。第二个 MZI 的分光比设置为 50:50。可以通过使用快速光电二极管或 SNSPD 测量来自脉冲光输入信号的 AMZI 的两个输出来确认这些条件。然后调整 Bob AMZI 短臂上的相位加热器,直到相位偏移与 Alice AMZI 产生的相位偏移对齐。一旦为每个 AMZI PIC 找到最佳工作电压,它们就不需要在工作期间进行调整。我们预计芯片的温度稳定性极大地促进了加热器设定点的稳定性。
量子信息利用独立和纠缠的量子系统来执行一系列信息处理任务,这比传统系统更具优势 [1]。量子通信是量子信息的一个主要分支,其目的是通过通信链路(光纤或自由空间信道)在远程方(通常称为 Alice 和 Bob)之间忠实地传输光子量子态 [2]。量子密钥分发 (QKD) 是一种重要的量子通信协议,其目标是在 Alice 和 Bob 之间远程生成共享密钥 [3-5]。其有效性已在长距离上得到证实 [6],这对于实际应用来说是理想的。过去,大多数量子通信实验都集中在点对点应用上,直到最近,人们对网络和多用户应用的兴趣才有所增加,并将大量精力集中在支持未来量子计算机网络的底层通信基础设施上,即所谓的量子互联网 [7]。与标准通信网络一样,路由将是实现单光子动态功能的一项基本功能。实现具有潜在快速响应时间的单光子路由器的直接方法是使用干涉仪 [8 – 11]。在 [8] 中,使用在其一条臂中带有相位调制器的马赫-曾德尔干涉仪 (MZI) 将单光子按需路由到其一个输出。基于 MZI 设计的具有两个输入和两个输出的单光子开关也已提出 [9]。在 [10] 中,还提出了一种基于 MZI 的耦合器,其中光子可以作为可调开关以任何分光比路由。在这些论文中,提出了三种路由配置,由于使用 MZI,所有这些配置都需要额外的主动相位稳定系统。为了获得更稳定的设计,另一种配置采用了 Sagnac 光纤
摘要:综合硅光子学中的极化依赖性对量子技术的量子状态的操纵有害影响。这些限制对进一步的技术发展具有深远的影响,尤其是在量子光子互联网中。在这里,我们提出了一个基于340 nm厚的硅在绝缘子(SOI)平台上的独立于极化的马赫 - Zehnder干涉仪(MZI)结构。MZI促进了低损失,宽阔的操作带宽以及对制造不完美的宽敞耐受性。,对于横向电动(TE)和横向磁性(TM)模式,我们在100 nm带宽(1500 〜1600 nm)中实现了<10%的过剩损失,> 18 dB的灭绝无线电的灭绝无线电损失。我们在数值上证明了在1550 nm处两个极化的干扰可见性为99%,独立于极化的损失(PDL)为0.03 dB。此外,通过使用相补偿和自我形象的原理,我们将波导锥度的长度缩短了几乎一个数量级,而TE和TM极化的传输均达到95%。到目前为止,所提出的结构可以显着改善整合并促进整体式综合量子互联网的发展。
图 1. 晶圆级基于 LN 的 MWP 信号处理引擎及其构建模块。a 基于 LN 的 MWP 处理引擎示意图,由将模拟电子信号忠实地转换为光域的高速 EO 调制部分和低损耗多用途光子处理部分组成。b 使用紫外步进光刻系统对 4 英寸晶圆级 LN 光子集成电路进行图案化拍摄。c 我们高速 MWP 系统基本构建模块的显微镜图像和关键性能指标,包括固有品质因数 ~ 6 × 10 6 的微谐振器、用于信号编码的低驱动电压和宽带强度和相位调制器、作为积分器的分插环谐振器、作为微分器的非平衡 MZI,以及作为二阶积分器和微分器的级联环和 MZI。 d 设备的假彩色扫描电子显微照片(SEM),分别显示波导的侧壁、微谐振器的耦合区域、波导和多模干涉(MMI)耦合器的横截面图。
图 1 用于 PCM 后端集成的 SiN 辅助硅光子工艺。(a) 器件制造流程图。(b) 测量具有不同数量级联沟槽的波导的透射光谱。插图是级联器件的布局。(c) 采用切割法评估 SiO 2 沟槽蚀刻工艺引入的波导损耗。(d) 制造后的器件的 3D 示意图。后端集成的 SbSe 可实现推挽式 MZI 开关的微调
由于对集成的光电电路的需求日益增长和较高的光学通信带宽,光学解体器在电信行业的全光设备中具有很大的潜力[1]。对数据速率的越来越多的需求激发了对多重技术的需求[2]。可以使用以下技术方法来创建光学反复传动器:Y分支设备[3,4],Mach-Zehnder干涉仪(MZI)[5],燃烧的波导侧壁光栅[6]和多模层干扰(MMI)COUPLERS [7,8]。为了提高数据传输比特率,波长多路复用(WDM)是广泛使用的技术之一[1]。通过减少峰值波长之间的距离,可以利用更多的通道来利用单个光谱带。